Как работает газотурбинный двигатель
Перейти к содержимому

Как работает газотурбинный двигатель

  • автор:

Газотурбинный двигатель: принцип работы и конструкция

Газотурбинный двигатель – это то, что в последнее время используется как энергетическая установка для машины. И это связано не только с несомненными преимуществами данного агрегата. Газотурбинный двигатель способен развить мощность, которая просто необходима некоторым автомобилям.

Газотурбинный двигатель

Конструкция

Благодаря тому, что у этого агрегата отсутствуют возвратно-поступательно двигающиеся части, а также тому, что его ротор обладает высокой частотой вращений, можно существенно уменьшить габаритные размеры и удельную массу этого двигателя (если сравнивать с дизелем). А это, в свою очередь, позволяет рассмотреть его как перспективный агрегат. Итак, чтобы создать газотурбинный двигатель своими руками (данным процессом интересуются многие – это реально, однако весьма трудно), нужно иметь турбины, камеру сгорания и компрессор. Также в его комплектацию входят стартер, масляный насос, регулятор частоты вращений и другое оборудование. Как правило, в автомобильных двигателях газотурбинного типа применяется центробежный одноступенчатый компрессор, при помощи которого давление воздуха увеличивается в 3,5 раза. Чтобы достичь указанного давления, нужно, чтобы компрессорное колесо вращалось с как можно большей скоростью. А она составляет около 420-450 метров в секунду.

Материалы

Газотурбинный двигатель принцип работы

Для изготовления камеры сгорания чаще всего используется листовой жаростойкий материал. Газотурбинный двигатель в своей комплектации имеет осевую и центростремительную турбины. Они же состоят из рабочего колеса и соплового аппарата. Газ в осевой турбине, проходя по каналам, которые находятся в рабочем колесе, изменяет направление своего движения. При этом оказывается давление на лопатки. Благодаря этому образуется сила, которая приводит во вращение рабочее колесо.

Газотурбинный двигатель: принцип работы устройства

Компрессорный вал при помощи стартера приводится в движение. Пусковая частота вращения составляет 2530% от номинальной. Сжатый воздух подается компрессором в камеру сгорания, а в неё через форсунку нагнетается топливо с помощью шестеренчатого насоса. После этого посредством электрической свечи накаливания поджигается горючее. И как только устойчивая зона горения образована, последующее горючее воспламеняется от соприкосновения с огнем, а отработанные газы затем уходят в атмосферу через выпускную трубу.

Газотурбинный двигатель своими руками

Отличительные свойства

Хочется отметить, что газотурбинный двигатель обладает еще и высочайшими пусковыми качествами. Несмотря на то что его стартер имеет достаточно небольшую производительность, он может обеспечить пуск при абсолютно любой температуре внешней среды. Это очень хорошее качество. И еще одно его существенное преимущество – достаточно малая токсичность газов, которые отрабатываются двигателем: она в 37 раз меньше тех, которые извергает дизель. Из этого можно сделать вывод, что такой двигатель еще и безопасен для окружающей среды.

Как функционирует газотурбинный двигатель?

Газотурбинный двигатель — представляет собой тепловой силовой агрегат, который осуществляет свою работу по принципу реорганизации тепловой энергии в механическую.

Ниже подробно рассмотрим, как работает газотурбинный двигатель, а также его устройство, разновидности, преимущества и недостатки.

Газотурбинный двигатель

Отличительные черты газотурбинных двигателей

Сегодня наиболее широко подобный тип моторов используется в авиации. Увы, но из-за особенностей устройства они не могут применяться для обычных легковых автомобилей.

По сравнению с другими агрегатами внутреннего сгорания газотурбинный движок обладает наибольшей удельной мощностью, что является его основным плюсом. Помимо этого такой двигатель способен функционировать не только на бензине, но и на множества других видах жидкого горючего. Как правило, он работает на керосине либо на дизельном горючем.

Газотурбинный и поршневой двигатель, которые устанавливаются на «легковушках» за счет сжигания топлива изменяют химическую энергию горючего в тепловую, а затем и в механическую.

Но сам процесс у данных агрегатов немного различается. И в том и в другом движке сначала осуществляется забор (то есть воздушный поток поступает в мотор), затем происходит сжатие и впрыск горючего, после этого ТВС загорается, вследствие чего сильно расширяется и в результате выбрасывается в атмосферу.

Различие состоит в том, что в газотурбинных аппаратах все это проходит в одно время, но в различных частях агрегата. В поршневом же все осуществляется в одной точке, но по очередности.

Проходя через турбинный мотор, воздух сильно сжимается в объеме и благодаря этому увеличивает давление почти в сорок раз.

Газотурбинный двигатель

Единственное движение в турбине это вращательное, когда как в иных агрегатах внутреннего сгорания, помимо вращения коленвала также происходит движение поршня.

КПД и мощность газотурбинного двигателя выше чем у поршневого, несмотря на то, что вес и размеры меньше.

Для экономного потребления топлива газовая турбина оснащена теплообменником — диском из керамики, который функционирует от двигателя с небольшой частотой вращения.

Устройство и принцип работы агрегата

По своей конструкции движок не очень сложный, он представлен камерой сгорания, где оборудованы форсунки и свечи зажигания, которые необходимы для подачи горючего и добычи искрового заряда. Компрессор оснащен на валу вместе с колесом, обладающим особыми лопатками.

Помимо этого мотор состоит из таких составляющих как — редуктор, канал впуска, теплообменник, игла, диффузор и выпускной трубопровод.

Во время вращения компрессорного вала, воздушный поток, поступающий через канал впуска, захватывается его лопастями. После увеличения скорости компрессора до пятисот м в секунду, он нагнетается в диффузор. Скорость у воздуха на выходе диффузора снижается, но давление увеличивается. Затем воздушный поток оказывается в теплообменнике, где происходит его нагрев за счет отработанных газов, а после этого воздух подается в камеру сгорания.

Вместе с ним туда попадает горючее, которое распыляется через форсунок. После того как топливо перемешивается с воздухом, создается топливно-воздушная смесь, которая загорается благодаря искре получаемой от свечи зажигания. Давление в камере при этом начинает увеличиваться, а турбинное колесо приводится в действие за счет газов попадающих на лопатки колеса.

Газотурбинный двигатель

В итоге осуществляется передача крутящего момента колеса на трансмиссию авто, а отходящие газы выбрасываются в атмосферу.

Плюсы и минусы двигателя

Газовая турбина, как и паровая, развивает большие обороты, что позволяет ей набирать хорошую мощность, несмотря на свои компактные размеры.

Охлаждается турбина очень просто и эффективно, для этого не нужно каких-либо дополнительных приборов. У нее нет трущихся элементов, а подшипников совсем немного, за счет чего движок способен функционировать надежно и долгое время без поломок.

Главный минус подобных агрегатов в том, что стоимость материалов, из которых они изготавливаются довольно высокая. Цена на ремонт газотурбинных двигателей тоже немалая. Но, несмотря на это они постоянно совершенствуются и разрабатываются во многих странах мира, включая нашу.

Газовую турбину не устанавливают на легковые автомобили, прежде всего из-за постоянной нужды в ограничении температуры газов, которые поступают на турбинные лопатки. Вследствие этого понижается КПД аппарата и повышается потребление горючего.

Сегодня уже придуманы некоторые методы, которые позволяют повысить КПД турбинных двигателей, например, с помощью охлаждения лопаток или применения тепла выхлопных газов для обогрева воздушного потока, который поступает в камеру. Поэтому вполне возможно, что через некоторое время разработчики смогут создать экономичный двигатель своими руками для автомобиля.

Газотурбинный двигатель

Среди главных преимуществ агрегата можно также выделить:

  • Низкое содержание вредоносных веществ в выхлопных газах;
  • Простота в обслуживании (не нужно менять масло, а все детали обладают износостойкостью и долговечностью);
  • Нет вибраций, поскольку есть возможность запросто сбалансировать вращающейся элементы;
  • Низкий уровень шума во время работы;
  • Хорошая характеристика кривой крутящего момента;
  • Заводиться быстро и без затруднений, а отклик двигателя на газ не запаздывает;
  • Повышенная удельная мощность.

Виды газотурбинных двигателей

По своему строению данные агрегаты разделяются на четыре типа. Первый из них это турбореактивный, его в большинстве своем устанавливают на военные самолеты, обладающие высокой скоростью. Принцип работы заключается в том, что газы, выходящие на большой скорости из мотора, через сопло толкают самолет вперед.

Другой тип — турбиновинтовой. Его устройство от первого отличается тем, что он имеет еще одну секцию турбины. Данная турбина составлена из ряда лопаток, которые забирают остаток энергии у газов, прошедших через турбину компрессора и благодаря этому осуществляют вращение воздушного винта.

Винт может располагаться как в задней части агрегата, так и в передней. Отходящие газы выводятся через выхлопные трубы. Такой реактивный аппарат оснащается на самолетах, летающих на низкой скорости и на малой высоте.

Газотурбинный двигатель

Третий тип — турбовентиляторный, который похож по своей конструкции на предыдущий двигатель, но у него 2-я турбинная секция забирает энергию у газов не полностью и поэтому подобные движки также обладают выхлопными трубами.

Главная особенность такого двигателя в том, что его вентилятор, закрытый в кожух, работает от турбины низкого давления. Поэтому движок называют еще 2-х контурным, поскольку воздушный поток проходит через агрегат, являющейся внутренним контуром и через свой внешний контур, необходимый только лишь для направления потока воздуха, который толкает мотор вперед.

Самые новейшие самолеты оборудованы именно турбовентиляторными двигателями. Они эффективно функционируют на большой высоте, а также отличаются экономичностью.

Последний тип — турбовальный. Схема и устройство газотурбинного двигателя этого типа почти такая же, как и у прошлого движка, но от его вала, который присоединен к турбине, приводится в действие практически все. Чаще всего его устанавливают в вертолеты, и даже на современные танки.

Двухпоршневой и малоразмерный двигатель

Наиболее распространен двигатель с двумя валами, оборудованный теплообменником. В сравнении с агрегатами, у которых всего 1 вал, такие аппараты более эффективные и мощные. 2-х вальный двигатель оснащен турбинами, одна из которых предназначена для привода компрессора, а другая для привода осей.

Газотурбинный двигатель

Подобный агрегат обеспечивает машине хорошие динамические характеристики и сокращает кол-во скоростей в трансмиссии.

Также существуют малоразмерные газотурбинные двигатели. Они состоят из компрессора, газо-воздушного теплообменника, камеры сгорания и двух турбин, одна из которых находятся в одном корпусе со сборником газа.

Малоразмерные газотурбинные двигатели применяются в основном на самолетах и вертолетах, которые преодолевают большие расстояние, а также на беспилотных летательных устройств и ВСУ.

Агрегат со свободно поршневым генератором

На сегодняшний день аппараты этого типа являются наиболее перспективными для авто. Устройство движка представлено блоком, который соединяет поршневой компрессор и 2-х тактовый дизель. В середине находится цилиндр с наличием двух поршней объединенных друг с другом с помощью специального приспособления.

Работа движка начинается с того, что воздух сжимается во время схождения поршней и происходит возгорание горючего. Газы образуются за счет сгоревшей смеси, они способствуют расхождению поршней при повышенной температуре. Затем газы оказываются в газо-сборнике. За счет продувочных щелей в цилиндр попадает пережатый воздух, помогающий очистить агрегат от отработанных газов. Затем цикл начинается заново.

Как работает газотурбинный двигатель

Газотурбинный двигатель, также известный как турбореактивный двигатель, является одним из ключевых компонентов воздушных, морских и наземных транспортных средств. Он использует высокоскоростной поток газа, проходящего через механический аппарат, чтобы создать тягу и обеспечить движение транспортного средства.

Принцип работы газотурбинного двигателя основан на законе сохранения импульса, который гласит: «Сила, приложенная к телу, равна изменению его импульса в единицу времени». Внутри газотурбинного двигателя происходят несколько этапов работы: впуск, сжатие, сгорание, рабочий процесс и выхлоп. Каждый из этих этапов выполняется различными компонентами, такими как компрессор, камера сгорания и турбина.

Структура газотурбинного двигателя включает в себя несколько ключевых элементов. Компрессор выполняет функцию сжатия воздуха, что увеличивает его давление и температуру. Затем сжатый воздух поступает в камеру сгорания, где смешивается с топливом и происходит сгорание. Это вызывает высокотемпературные газы, которые затем поступают на турбину, вызывая ее вращение. Турбина передает механическую энергию газовому генератору и компрессору, обеспечивая их работу. Наконец, горячие газы выходят через дюзу и создают реактивную силу, обеспечивающую тягу для движения транспортного средства.

Газотурбинные двигатели имеют ряд преимуществ по сравнению с другими типами двигателей. Они обладают высокой мощностью и относительно низким весом, что делает их идеальными для использования в авиации и судостроении. Они обеспечивают быстрый отклик и легкость регулирования мощности, что является важным фактором при работе с двигателями транспортных средств. Кроме того, газотурбинные двигатели требуют меньшего обслуживания и имеют длительный срок службы, что экономически выгодно для перевозчиков и пассажиров.

Как работает газотурбинный двигатель: принцип работы, структура и преимущества

Основными компонентами газотурбинного двигателя являются компрессор, камера сгорания и турбина. Компрессор позволяет сжать входящий воздух, тем самым увеличивая его давление и энергию. Сжатый воздух поступает в камеру сгорания, где смешивается с топливом и происходит сгорание, создавая высокотемпературные газы.

Эти газы затем поступают на турбину, которая приводит компрессор, а также используется для привода других систем, например, для генерации электроэнергии или погружения кораблей. После прохождения через турбину, газы выходят в открытую среду через сопло, создавая дополнительную тягу.

Газотурбинные двигатели обладают рядом преимуществ по сравнению с другими типами двигателей. Они имеют высокую энергоэффективность и мощность, меньший вес и компактность. Они также способны быстро набирать обороты и имеют широкий диапазон рабочих условий. Это делает их идеальным выбором для использования в авиации, энергетике и других отраслях, где требуется высокая мощность и надежность.

Принцип работы газотурбинного двигателя

Принцип работы газотурбинного двигателя описывается следующим образом:

  1. Воздух попадает во входной компрессор, где он сжимается до высокого давления с помощью ротора и статора. Это позволяет увеличить энергию воздушного потока и давление воздуха.
  2. Сжатый воздух поступает в камеру сгорания, где он смешивается с топливом и поджигается. В результате происходит нагревание воздуха и образование высокотемпературных газов, которые имеют высокое давление.
  3. Полученные газы передаются в турбину, где их энергия превращается в механическую работу, приводя в движение ротор турбины.
  4. Мощность, вырабатываемая турбиной, передается от нее к входному компрессору через общий вал. Это обеспечивает привод компрессора и начинает следующий цикл работы двигателя.
  5. Также, часть энергии, вырабатываемой турбиной, может быть использована для привода других систем, таких как генераторы электроэнергии или насосы.

Преимущества газотурбинных двигателей включают высокую производительность, компактность, низкий вес и возможность работы на различных видах топлива. Они широко применяются в авиации, энергетике, морском транспорте и других отраслях промышленности.

Основные этапы работы

Газотурбинный двигатель проходит несколько этапов работы, каждый из которых выполняет свою функцию в процессе преобразования энергии.

  1. Вдувание воздуха: На первом этапе газотурбинный двигатель вдувает воздух из окружающей среды в компрессор. В компрессоре воздух сжимается и подается на следующий этап.
  2. Сжатие воздуха: На этом этапе сжатый воздух поступает в камеру сгорания, где смешивается с топливом и затем подвергается сжиганию. В результате сгорания выделяется большое количество тепла, которое энергетический поток затем преобразует в механическую энергию.
  3. Расширение газов: После сжигания смеси воздуха с топливом, горячие газы расширяются в турбине. Это позволяет приводить в движение работу сжатия воздуха компрессора и другие системы, а также передавать механическую энергию на сторонние устройства и механизмы.

Таким образом, газотурбинный двигатель проходит несколько этапов работы, превращая энергию топлива и воздуха в механическую энергию, которая может использоваться для привода различных устройств и механизмов.

Принцип действия

Процесс впуска начинается с впускной системы, которая позволяет воздуху попадать в двигатель. Затем воздух проходит через компрессор, где он сжимается, увеличивая давление и температуру. Сжатый воздух подается в камеры сгорания.

В камерах сгорания сжатый воздух смешивается с топливом и затем подвергается сгоранию. В результате этого процесса выделяется большое количество тепловой энергии, которая превращается в механическую энергию.

После процесса сгорания, горячие газы выходят из камеры сгорания и поступают на турбину. Турбина приводит в движение основной вал двигателя, а затем, через механическую связь, приводит в движение компрессор и генератор электроэнергии.

Остывание газов происходит в конечном турбинном устройстве, которое предназначено для снижения температуры и улучшения кпд двигателя.

Газотурбинные двигатели обладают рядом преимуществ, таких как высокая мощность, компактность и отсутствие жидкостей для смазки. Они широко используются в авиации, судостроении, электроэнергетике и промышленности.

Структура газотурбинного двигателя

Газотурбинный двигатель (ГТД) представляет собой сложную систему, состоящую из нескольких основных компонентов. Они взаимодействуют друг с другом, чтобы создать механическую работу из энергии горячих газов.

Основные компоненты газотурбинного двигателя включают:

1. Компрессор: Он играет роль в сжатии воздуха перед его подачей в камеру сгорания. Компрессор является одним из самых важных компонентов двигателя и создает высокое давление, необходимое для работы ГТД.

2. Камера сгорания: Здесь сжатый воздух смешивается с топливом и подвергается сгоранию. В результате этого процесса выделяется огромное количество тепловой энергии.

3. Турбина: Тепловая энергия, выделенная в камере сгорания, приводит в движение турбину. Турбина в свою очередь, заводит компрессор и приводит его в действие, в результате чего создается замкнутый цикл работы.

4. Силовой вал: Силовой вал связывает компрессор, турбину и другие компоненты газотурбинного двигателя. Он отвечает за передачу механической энергии от газовой турбины к приводным механизмам или непосредственно к приводному валу.

5. Выхлопная система: Горячие газы, выходящие из турбины, проходят через выхлопную систему, которая позволяет эффективно отводить отработанные газы из двигателя.

Множество возможных вариаций и конфигураций газотурбинных двигателей позволяют адаптировать их для различных целей и приложений. Преимуществами данного типа двигателей являются их высокий КПД, относительная компактность и быстрый отклик на изменение нагрузки.

Компоненты двигателя

Газотурбинный двигатель состоит из нескольких основных компонентов, каждый из которых выполняет свою функцию в процессе работы двигателя. Вот основные компоненты газотурбинного двигателя:

  • Впускной узел: Он отвечает за подачу воздуха в двигатель. Впускной узел включает в себя воздухозаборник, фильтры и системы очистки воздуха перед его поступлением в сжигательную камеру.
  • Сжигательная камера: В сжигательной камере проходит процесс сгорания топлива с воздухом и образуется высокотемпературный газ.
  • Турбина: Газы, выходящие из сжигательной камеры, приводят в действие турбину. Турбина преобразует энергию газов в механическую энергию вращения вала.
  • Компрессор: Компрессор отвечает за сжатие воздуха перед его поступлением в сжигательную камеру. Он работает в паре с турбиной и приводится в движение ею.

Эти компоненты взаимодействуют друг с другом и выполняют свои функции для обеспечения работоспособности газотурбинного двигателя. Каждый компонент играет важную роль в процессе работы и обеспечивает высокую эффективность и надежность двигателя.

Расположение и взаимодействие компонентов

Газотурбинные двигатели имеют сложную структуру, основанную на взаимодействии нескольких ключевых компонентов. Они включают в себя:

  • Компрессор: отвечает за сжатие воздуха перед подачей его в камеру сгорания.
  • Камера сгорания: в ней смешивается сжатый воздух с топливом, которое затем сжигается для создания горячих газов.
  • Турбина: приводится в движение горячими газами из камеры сгорания. Она приводит в действие компрессор и распределитель энергии для приведения в движение рабочих колес.
  • Рабочие колеса: основные движущиеся части газотурбинного двигателя. Они преобразуют энергию горячих газов в механическую энергию, которая затем используется для привода вращающегося вала.
  • Выхлопная система: отводит отработанные газы из газотурбинного двигателя и может включать в себя различные фильтры и регуляторы выбросов.

Заметно, что каждый компонент взаимодействует с другими для обеспечения непрерывной работы двигателя. Компрессор сжимает воздух и передает его в камеру сгорания, где он смешивается с топливом и затем сжигается. Получившиеся горячие газы приводят в движение турбину, которая в свою очередь приводит в движение рабочие колеса. Рабочие колеса преобразуют энергию газов в механическую энергию, которая передается через вал и используется для привода например, для вращения лопастей самолета или генератора электроэнергии.

Такое расположение и взаимодействие компонентов делает газотурбинные двигатели эффективными и надежными. Благодаря отсутствию сложной системы охлаждения как у поршневых двигателей, они намного компактнее и легче весом. Кроме того, газотурбинные двигатели обладают высокой относительной мощностью и могут работать на широком диапазоне топлива, что делает их универсальными и удобными в использовании в различных областях, включая авиацию, энергетику и промышленность.

Преимущества газотурбинного двигателя

  1. Высокая эффективность: газотурбинные двигатели обладают высоким КПД, что позволяет снизить потери энергии и улучшить экономические показатели.
  2. Быстрая реакция на изменение нагрузки: газотурбинный двигатель может быстро изменять свою мощность в зависимости от потребностей, что делает его идеальным для использования в авиации и других отраслях, где требуется мгновенная реакция.
  3. Низкие выбросы: газотурбинные двигатели обладают более низкими выбросами вредных веществ, по сравнению с другими типами двигателей, что помогает снизить негативное воздействие на окружающую среду.
  4. Надежность: газотурбинные двигатели могут работать непрерывно в тяжелых условиях и имеют длительный срок службы без необходимости частого обслуживания.
  5. Универсальность применения: газотурбинные двигатели могут быть использованы в различных отраслях, включая энергетику, авиацию, морской транспорт и даже домашнее использование.

В целом, газотурбинный двигатель представляет собой высокотехнологичное решение для энергетики и транспорта, обладающее несколькими важными преимуществами, которые делают его привлекательным выбором для многих задач.

Высокая эффективность и мощность

Одной из особенностей газотурбинных двигателей является возможность достижения высокой мощности при относительно небольших размерах. Это достигается за счет высокой скорости вращения вала турбины и компрессора, что позволяет эффективно использовать энергию горячих газов. Благодаря этому газотурбинные двигатели широко применяются в авиации, электростанциях и других областях, где требуется высокая мощность в компактном исполнении.

Кроме того, газотурбинные двигатели отличаются высокой степенью автоматизации и надежностью работы. Благодаря использованию современных автоматических систем контроля и регулирования, газотурбинные двигатели могут быстро и точно реагировать на изменения нагрузки и обеспечивать стабильное функционирование в широком диапазоне рабочих условий.

Таким образом, высокая эффективность и мощность газотурбинных двигателей делают их привлекательным выбором в различных отраслях, где требуется надежная и эффективная энергетическая установка.

Вопрос-ответ:

Как работает газотурбинный двигатель?

Газотурбинный двигатель работает по принципу передачи энергии от горения топлива к вращающемуся ротору через газовый поток. Воздух втягивается в компрессор, где он сжимается, затем сжатый воздух подается в камеру сгорания, где он смешивается с топливом и горит. При горении выделяется горячий газ, который выходит из камеры сгорания и расширяется в турбине, передавая свою энергию на вал двигателя. Вращающийся вал приводит в действие компрессор и, если необходимо, другие системы, такие как генератор электроэнергии или пропеллеры.

Каковы основные преимущества газотурбинных двигателей?

Газотурбинные двигатели обладают рядом преимуществ перед другими типами двигателей. Они имеют высокий КПД за счет высокой термической эффективности и отсутствия механических потерь. Кроме того, они обладают высоким отношением мощности к массе и обладают быстрым откликом на изменение нагрузки. Также они могут работать на различных видах топлива и намного компактнее других типов двигателей.

Какова структура газотурбинного двигателя?

Газотурбинные двигатели состоят из нескольких основных компонентов. Основные элементы включают компрессор, камеру сгорания, турбину и вал. Компрессор служит для сжатия воздуха, камера сгорания предназначена для смешивания топлива с воздухом и его горения, турбина преобразует энергию горячего газа в механическую энергию и передает ее на вал.

Можно ли использовать газотурбинные двигатели для генерации электроэнергии?

Да, газотурбинные двигатели широко используются для генерации электроэнергии. Они могут быть установлены на электростанциях и использоваться для привода генераторов. Газотурбинные электростанции обладают высокой эффективностью и относительной простотой эксплуатации, поэтому их используют в различных отраслях, включая тяжелую промышленность и судостроение. Кроме того, газотурбинные двигатели могут быть использованы в качестве вспомогательного привода на борту кораблей или самолетов.

Как работает газотурбинный двигатель?

Газотурбинный двигатель работает по принципу внутреннего сгорания, но отличается от поршневых двигателей. В нем есть турбина и компрессор, которые взаимодействуют с помощью вала. Воздух попадает в компрессор, где его давление увеличивается, затем он попадает в камеру сгорания, где смешивается с топливом и происходит сгорание. Это горячие газы расширяются и приводят в движение турбину, которая в свою очередь приводит в движение компрессор. Таким образом, газотурбинный двигатель работает по принципу циклического процесса.

В чем преимущества газотурбинных двигателей?

Газотурбинные двигатели обладают рядом преимуществ по сравнению с другими типами двигателей. Они компактны и обеспечивают высокую мощность на малом весе. Кроме того, у них высокий КПД, что означает, что они эффективно используют топливо. Газотурбинные двигатели также обладают высокими скоростями вращения, что позволяет им достигать высокой производительности. Они также могут работать на различных видах топлива и могут запускаться и останавливаться сравнительно быстро. Благодаря этим преимуществам, газотурбинные двигатели нашли широкое применение в авиации, энергетике и других отраслях.

Как функционирует газотурбинный двигатель?

Газотурбинный двигатель — представляет собой тепловой силовой агрегат, который осуществляет свою работу по принципу реорганизации тепловой энергии в механическую.

Ниже подробно рассмотрим, как работает газотурбинный двигатель, а также его устройство, разновидности, преимущества и недостатки.

Газотурбинный двигатель: конструкция, назначение, принцип работы

Отличительные черты газотурбинных двигателей

Сегодня наиболее широко подобный тип моторов используется в авиации. Увы, но из-за особенностей устройства они не могут применяться для обычных легковых автомобилей.

По сравнению с другими агрегатами внутреннего сгорания газотурбинный движок обладает наибольшей удельной мощностью, что является его основным плюсом. Помимо этого такой двигатель способен функционировать не только на бензине, но и на множества других видах жидкого горючего. Как правило, он работает на керосине либо на дизельном горючем.

Газотурбинный и поршневой двигатель, которые устанавливаются на «легковушках» за счет сжигания топлива изменяют химическую энергию горючего в тепловую, а затем и в механическую.

Но сам процесс у данных агрегатов немного различается. И в том и в другом движке сначала осуществляется забор (то есть воздушный поток поступает в мотор), затем происходит сжатие и впрыск горючего, после этого ТВС загорается, вследствие чего сильно расширяется и в результате выбрасывается в атмосферу.

Различие состоит в том, что в газотурбинных аппаратах все это проходит в одно время, но в различных частях агрегата. В поршневом же все осуществляется в одной точке, но по очередности.

Проходя через турбинный мотор, воздух сильно сжимается в объеме и благодаря этому увеличивает давление почти в сорок раз.

Газотурбинный двигатель: конструкция, назначение, принцип работы

Единственное движение в турбине это вращательное, когда как в иных агрегатах внутреннего сгорания, помимо вращения коленвала также происходит движение поршня.

КПД и мощность газотурбинного двигателя выше чем у поршневого, несмотря на то, что вес и размеры меньше.

Для экономного потребления топлива газовая турбина оснащена теплообменником — диском из керамики, который функционирует от двигателя с небольшой частотой вращения.

Устройство и принцип работы агрегата

По своей конструкции движок не очень сложный, он представлен камерой сгорания, где оборудованы форсунки и свечи зажигания, которые необходимы для подачи горючего и добычи искрового заряда. Компрессор оснащен на валу вместе с колесом, обладающим особыми лопатками.

Помимо этого мотор состоит из таких составляющих как — редуктор, канал впуска, теплообменник, игла, диффузор и выпускной трубопровод.

Во время вращения компрессорного вала, воздушный поток, поступающий через канал впуска, захватывается его лопастями. После увеличения скорости компрессора до пятисот м в секунду, он нагнетается в диффузор. Скорость у воздуха на выходе диффузора снижается, но давление увеличивается. Затем воздушный поток оказывается в теплообменнике, где происходит его нагрев за счет отработанных газов, а после этого воздух подается в камеру сгорания.

Вместе с ним туда попадает горючее, которое распыляется через форсунок. После того как топливо перемешивается с воздухом, создается топливно-воздушная смесь, которая загорается благодаря искре получаемой от свечи зажигания. Давление в камере при этом начинает увеличиваться, а турбинное колесо приводится в действие за счет газов попадающих на лопатки колеса.

Газотурбинный двигатель: конструкция, назначение, принцип работы

В итоге осуществляется передача крутящего момента колеса на трансмиссию авто, а отходящие газы выбрасываются в атмосферу.

Плюсы и минусы двигателя

Газовая турбина, как и паровая, развивает большие обороты, что позволяет ей набирать хорошую мощность, несмотря на свои компактные размеры.

Охлаждается турбина очень просто и эффективно, для этого не нужно каких-либо дополнительных приборов. У нее нет трущихся элементов, а подшипников совсем немного, за счет чего движок способен функционировать надежно и долгое время без поломок.

Главный минус подобных агрегатов в том, что стоимость материалов, из которых они изготавливаются довольно высокая. Цена на ремонт газотурбинных двигателей тоже немалая. Но, несмотря на это они постоянно совершенствуются и разрабатываются во многих странах мира, включая нашу.

Газовую турбину не устанавливают на легковые автомобили, прежде всего из-за постоянной нужды в ограничении температуры газов, которые поступают на турбинные лопатки. Вследствие этого понижается КПД аппарата и повышается потребление горючего.

Сегодня уже придуманы некоторые методы, которые позволяют повысить КПД турбинных двигателей, например, с помощью охлаждения лопаток или применения тепла выхлопных газов для обогрева воздушного потока, который поступает в камеру. Поэтому вполне возможно, что через некоторое время разработчики смогут создать экономичный двигатель своими руками для автомобиля.

Газотурбинный двигатель: конструкция, назначение, принцип работы

Среди главных преимуществ агрегата можно также выделить:

  • Низкое содержание вредоносных веществ в выхлопных газах;
  • Простота в обслуживании (не нужно менять масло, а все детали обладают износостойкостью и долговечностью);
  • Нет вибраций, поскольку есть возможность запросто сбалансировать вращающейся элементы;
  • Низкий уровень шума во время работы;
  • Хорошая характеристика кривой крутящего момента;
  • Заводиться быстро и без затруднений, а отклик двигателя на газ не запаздывает;
  • Повышенная удельная мощность.

Виды газотурбинных двигателей

По своему строению данные агрегаты разделяются на четыре типа. Первый из них это турбореактивный, его в большинстве своем устанавливают на военные самолеты, обладающие высокой скоростью. Принцип работы заключается в том, что газы, выходящие на большой скорости из мотора, через сопло толкают самолет вперед.

Другой тип — турбиновинтовой. Его устройство от первого отличается тем, что он имеет еще одну секцию турбины. Данная турбина составлена из ряда лопаток, которые забирают остаток энергии у газов, прошедших через турбину компрессора и благодаря этому осуществляют вращение воздушного винта.

Винт может располагаться как в задней части агрегата, так и в передней. Отходящие газы выводятся через выхлопные трубы. Такой реактивный аппарат оснащается на самолетах, летающих на низкой скорости и на малой высоте.

Газотурбинный двигатель: конструкция, назначение, принцип работы

Третий тип — турбовентиляторный, который похож по своей конструкции на предыдущий двигатель, но у него 2-я турбинная секция забирает энергию у газов не полностью и поэтому подобные движки также обладают выхлопными трубами.

Главная особенность такого двигателя в том, что его вентилятор, закрытый в кожух, работает от турбины низкого давления. Поэтому движок называют еще 2-х контурным, поскольку воздушный поток проходит через агрегат, являющейся внутренним контуром и через свой внешний контур, необходимый только лишь для направления потока воздуха, который толкает мотор вперед.

Самые новейшие самолеты оборудованы именно турбовентиляторными двигателями. Они эффективно функционируют на большой высоте, а также отличаются экономичностью.

Последний тип — турбовальный. Схема и устройство газотурбинного двигателя этого типа почти такая же, как и у прошлого движка, но от его вала, который присоединен к турбине, приводится в действие практически все. Чаще всего его устанавливают в вертолеты, и даже на современные танки.

Двухпоршневой и малоразмерный двигатель

Наиболее распространен двигатель с двумя валами, оборудованный теплообменником. В сравнении с агрегатами, у которых всего 1 вал, такие аппараты более эффективные и мощные. 2-х вальный двигатель оснащен турбинами, одна из которых предназначена для привода компрессора, а другая для привода осей.

Газотурбинный двигатель: конструкция, назначение, принцип работы

Подобный агрегат обеспечивает машине хорошие динамические характеристики и сокращает кол-во скоростей в трансмиссии.

Также существуют малоразмерные газотурбинные двигатели. Они состоят из компрессора, газо-воздушного теплообменника, камеры сгорания и двух турбин, одна из которых находятся в одном корпусе со сборником газа.

Малоразмерные газотурбинные двигатели применяются в основном на самолетах и вертолетах, которые преодолевают большие расстояние, а также на беспилотных летательных устройств и ВСУ.

Агрегат со свободно поршневым генератором

На сегодняшний день аппараты этого типа являются наиболее перспективными для авто. Устройство движка представлено блоком, который соединяет поршневой компрессор и 2-х тактовый дизель. В середине находится цилиндр с наличием двух поршней объединенных друг с другом с помощью специального приспособления.

Работа движка начинается с того, что воздух сжимается во время схождения поршней и происходит возгорание горючего. Газы образуются за счет сгоревшей смеси, они способствуют расхождению поршней при повышенной температуре. Затем газы оказываются в газо-сборнике. За счет продувочных щелей в цилиндр попадает пережатый воздух, помогающий очистить агрегат от отработанных газов. Затем цикл начинается заново.

Турбинный двигатель на автомобиле: его преимущества и недостатки

Газотурбинный двигатель: конструкция, назначение, принцип работы

Вопросы, рассмотренные в материале:

  • В чем отличия турбинных двигателей на автомобиле от обычных
  • Какой принцип действия у турбинного двигателя на автомобиле
  • В чем преимущества и недостатки турбинного двигателя

Автовладельцы наверняка слышали об автомобилях, комплектация которых предполагает наличие турбированного двигателя. Такие двигатели внутреннего сгорания (ДВС) имеют как почитателей, так и противников. В этой статье поговорим о том, в чем заключаются преимущества и недостатки турбинных двигателей на автомобиле.

Особенности турбинного двигателя на автомобиле

Газотурбинный двигатель: конструкция, назначение, принцип работы

Страны, в которых большинство пользуются автомобильным транспортом, ведут активную борьбу за экономию топлива и регулирование выбросов вредных веществ в атмосферу. Благодаря этому турбинные двигатели среднего и малого объема на автомобилях приобретают все больший спрос.

Впервые турбинные ДВС увидели свет в 1905 году, однако легковые автомобили начали комплектоваться такими моторами со второй половины прошлого века. Что это – турбинный двигатель на автомобиле? Турбонаддув представляет собой систему, нагнетающую в цилиндры атмосферного двигателя дополнительный воздух, что увеличивает среднее эффективное давление в цилиндрах. За счет этого повышается мощность ДВС, при этом его конструкция остается неизменной.

Функционирование мотора с турбонаддувом обеспечивается благодаря приводному нагнетателю, который пользуется энергией отработанных газов. Газы заставляют вращаться колесо турбины, а она, в свою очередь, используя роторный вал, приводит в движение колесо компрессора. Нагреваемый воздух сжимается колесом, а затем поступает в интеркулер, где охлаждается, после чего направляется в цилиндры.

Существует мнение, что благодаря турбинным двигателям автомобили отличаются экономичностью в городском цикле (об этом говорят производители) в сочетании со значительной пиковой мощностью при достижении максимальных оборотов (об этом также пишут автомобильные компании). В связи с этим автопроизводители начали укомплектовывать выпускаемые автомобили этим типом ДВС, поскольку данное решение позволяет соблюдать ужесточающиеся экологические стандарты и при этом сохраняет привычный уровень мощности, а в ряде случаев предлагает даже более высокий.

В настоящее время турбинными двигателями оснащаются различные типы автомобилей, их можно встретить в спорткарах, кроссоверах, внедорожниках и пикапах.

Газотурбинный двигатель: конструкция, назначение, принцип работы

Турбинные двигатели для автомобилей совершили прорыв в современном производстве силовых агрегатов. Задача их создателей заключалась в увеличении мощности ДВС при сохранении прежнего объема. А поскольку турбинами предполагалось комплектовать автомобили массового сегмента, они должны были обладать высокой надежностью.

Для направления тепловоздушной смеси в камеру сгорания в турбодвижке используется давление. Это позволяет увеличить крутящий момент и мощность мотора в целом. Турбиной оснащаются двигатели небольшого объема, использующие малое количество топлива, которые должны отвечать строгим стандартам экологичности. В этих ДВС турбина включается в работу за счет остающейся в выхлопных газах остаточной энергии. Газы приводят к образованию принудительного давления в цилиндрах, в которых топливовоздушная смесь готовится к последующей работе.

Рекомендуем

Изначально турбинами оснащались дизельные автомобили, так как конструктивные особенности турбонаддува при установке на бензиновый силовой агрегат приводили к снижению надежности мотора и увеличению стоимости. Позднее турбины претерпели конструктивные изменения, позволившие устанавливать их также и на бензиновые ДВС большинства авто, выпускаемых массово.

Принцип работы турбинного двигателя на автомобиле

Газотурбинный двигатель: конструкция, назначение, принцип работы

В зависимости от устройства и принципа действия ДВС бывают:

  • атмосферными;
  • турбированными.

Разница между ними заключается в том, что в систему турбонаддува входит компрессор, интеркулер, регулятор давления наддува и пр. Основным элементом является турбокомпрессор, который отвечает за повышение давления в системе впуска воздуха. Интеркулер необходим для охлаждения воздуха и увеличения его плотности.

Система находится под управлением регулятора наддува – перепускного клапана, который контролирует давление газов. Ограничивая их количество, клапан создает оптимальное давление в системе.

Турбокомпрессор функционирует следующим образом:

  • Пройдя сквозь воздушный фильтр, воздух достигает входного отверстия.
  • Воздух сжимается, процент содержания в нем кислорода повышается; за счет нагрева воздуха уменьшается его плотность.
  • Воздушная масса выходит из турбинного компрессора, попадает в интеркулер, где охлаждается.
  • Через дроссель и впускной коллектор сжатый воздух попадает в цилиндры двигателя.
  • Часть образовавшихся при работе двигателя выхлопных газов подается турбиной обратно в коллектор турбины; за счет этого воздушного потока приводится в движение вал, на одном из концов которого находится компрессор.
  • После этого воздух начинает повторно сжиматься.

Бензиновые и дизельные турбинные двигатели на автомобилях практически идентичны, разница заключается только в уровне наддува. Для дизельных ДВС необходимо большее давление, в связи с этим они комплектуются более мощными нагнетателями воздуха. Бензиновым двигателям достаточно нагнетателей меньшей мощности, поскольку излишнее давление в камере сгорания может привести к детонации.

  1. Бензиновый турбинный двигатель на автомобиле представляет собой ДВС с искусственно увеличенным благодаря турбине уровнем сжатия воздуха в камерах. За счет повышения этого параметра увеличивается мощность мотора и ряд других характеристик.

Создав самый первый силовой агрегат, инженеры начали попытки увеличения его мощности без значительного изменения объема мотора. Казалось бы, решить эту задачу очень просто, позволив ДВС более эффективно «дышать». Дополнительный объем воздуха, поступающий в цилиндры принудительно, под давлением, способен улучшить параметры сгорания топливовоздушной смеси.

За счет большего объема воздуха топливо может прогорать полностью, тем самым повышая мощность. Однако внедрение новых технологий происходило медленно. Изначально турбокомпрессоры устанавливались только на большие двигатели кораблей и авиации.

Преимущества и недостатки турбинных двигателей

Газотурбинный двигатель: конструкция, назначение, принцип работы

Владельцы автомобилей с турбинными двигателями говорят о следующих преимуществах турбины:

  1. Дополнительная бесплатная мощность двигателя автомобиля. Считается, что благодаря турбине на выхлопном коллекторе ДВС возникает добавочная энергия, вращающая аналогичную турбину на впуске. Таким образом, выхлопные газы используются в качестве бесплатного источника энергии для нагнетателя.

Впрочем, назвать эту теорию бесспорной нельзя, поскольку выпуск обладает так называемым сопротивлением. Инженеры на протяжении десятков лет работали над тем, чтобы снизить это сопротивление, поскольку в противном случае мощность двигателя не увеличится.

Для этого система комплектуется специальным генерирующим устройством, существенно уменьшающим выходное сопротивление. Соответственно, считать, что энергия, используемая турбонаддувом, является бесплатной, нельзя. Скорее ее можно считать дешевой.

Рекомендуем

Технически процесс достаточно прост. Нагнетатель является устройством, конструкция которого включает в себя два колеса – компрессорное и турбинное. Колесо турбины начинает вращаться за счет выхлопных газов, а затем приводит в движение компрессорное колесо, служащее для сжатия воздуха.

Компрессор взаимодействует с системой охлаждения автомобиля, так как в процессе эксплуатации он сильно нагревается. Для регулирования силы наддува используется перепускной клапан. При необходимости снизить давление внутри системы часть выхлопных газов пускается в обход турбины.

Газотурбинный двигатель: конструкция, назначение, принцип работы

  • Мощность ДВС увеличивается, при этом его объем и масса остаются неизменными. Благодаря используемой технологии турбонаддува мощность силового агрегата повышается, несмотря на неизменность объема и количества цилиндров. Результатом является улучшение характеристик небольших двигателей, уменьшение общей массы авто, снижение тормозного пути и времени разгона.
  • Автомобили с турбинным двигателем являются более экономичными, они потребляют в несколько раз меньше топлива, чем требуется авто с атмосферными моторами аналогичной мощности. Объяснить это можно тем, что один ход поршня в цилиндре турбинного силового агрегата за счет полного сгорания топлива расходует меньшее количество горючего. То есть мощность возрастает за счет насыщения топливовоздушной смеси дополнительным объемом воздуха.
  • Рассуждая о том, плохо или хорошо иметь автомобиль с турбинным двигателем, отметим и недостатки такого мотора:

    1. Зависимость работы турбины от оборотов. При разгоне авто на малых оборотах двигателя турбина не запустится, активного увеличения скорости не произойдет. Динамика разгона будет даже меньше, чем у ТС с обычными атмосферными моторами. На малых оборотах энергия выхлопных газов невелика, следовательно, вращение турбины нагнетателя будет слабым, а давление в камере сгорания – минимальным. Эффект от использования турбинного двигателя возникает лишь при высоких оборотах силового агрегата.
    2. Процесс нагнетания воздуха происходит достаточно медленно. Создание необходимого давления на впуске требует определенного количества времени. Благодаря работе инженеров, занятых решением этой проблемы, интервал в работе нагнетателя стал несколько меньше.
    3. Если комплектация авто предусматривает АКПП или вариатор, то при разгоне трансмиссия может автоматически перейти на более низкую передачу, уменьшая негативные последствия от инертности нагнетателя.

    На сегодняшний день справиться с проблемой инертности турбинного двигателя на автомобиле можно за счет:

    • битурбонаддува (двойного наддува);
    • турбины с адаптивной геометрией;
    • комбинированного наддува.

    Двойной турбонаддув предполагает использование двух небольших турбин, работающих в итоге быстрее по сравнению с одной, но большей по размеру. На каждую турбину приходится равное число цилиндров двигателя. В качестве аналогии можно рассмотреть несколько компрессоров, начинающих работать в своем режиме при разных оборотах ДВС.

    Турбина с адаптивной геометрией за счет изменения размера впускного канала может регулировать силу потока выхлопных газов, тем самым увеличивая эффективность работы турбинного двигателя автомобиля.

    Конструкция комбинированного наддува включает турбокомпрессор и механический нагнетатель. При работе двигателя на малых оборотах давление создается за счет нагнетателя, но при увеличении оборотов до определенной величины включается турбинный компрессор.

    Ранее отмечалось, что из-за сжатия воздуха температура в системе существенно возрастает, что отрицательно сказывается на ДВС. Чтобы избежать негативных последствий, используется дополнительное охлаждение, расходующее часть энергии.

    Газотурбинный двигатель: конструкция, назначение, принцип работы

    Хотя у турбинного двигателя на автомобиле и есть определенные недостатки, все же он отлично повышает мощность, эффективность и экономичность силового агрегата. К тому же, специалисты полагают, что существуют дополнительные возможности усовершенствования турбомоторов.

    Считается, что более простые двигатели являются более надежными. Исходя из этой логики, атмосферные ДВС должны быть более долговечными вследствие своей большей простоты. У турбинных двигателей на автомобилях больше элементов, соответственно, они имеют более сложное строение. Несмотря на их достаточно высокую надежность, в случае возникновения проблем с мотором затраты на его ремонт будут выше из-за более сложной конструкции.

    Высокие нагрузки могут ускорить износ ряда узлов ДВС, что, соответственно, приведет к сокращению срока службы силового агрегата в целом. Сама турбина также подвергается повышенным нагрузкам: высокая скорость вращения лопаток, большой нагрев – все это способно привести к выходу ее из строя спустя 100–150 тыс. км. Конечно, не последнее значение имеют используемые смазочные материалы, топливо, качество самой турбины и т. п. Ну и стоимость турбокомпрессоров достаточно высока.

    Отзывы водителей о турбинных двигателях

    А что говорят водители о турбомоторах? Обратимся к отзывам автовладельцев о турбинных двигателях на автомобиле.

    – Турбина – отличная вещь, обычно включается, когда обороты поднимаются до 3 000. Значит, если сильно не разгоняться, то охлаждение не нужно, да и расход топлива будет таким же, как у обычного мотора.

    Турбины живут долго при аккуратном уходе

    – Нормальный уход и своевременная замена масла в двигателе – залог длительной службы классических турбин даже на бензиновых ДВС, они вполне смогут пройти 1,5–2 сотни тысяч и даже больше. Стоят турбины от 20 до 60 тыс. рублей, к тому же можно выбрать новую, б/у или китайский аналог. Чаще всего поломки не касаются механики турбины. На новых аппаратах ставят актуаторы управления, вот они из-за жестких условий эксплуатации чаще всего и выходят из строя.

    Как долго турбина будет работать, зависит от условий эксплуатации автомобиля. Если она поломалась, отремонтировать чаще всего возможно, однако стоить это будет весьма недешево.

    Рекомендуем

    – Дизельные автомобили все должны быть с турбинными двигателями. Их легко тюнинговать, а работают они долго. Современные авто с турбомоторами разгоняются, конечно, очень быстро, даже если литраж маленький. Проблема одна – греются плохо и сами, и салон прогревают тоже неважно. У меня был 1,4 TSI – зимой не жарко было.

    Низкие обороты турбине не страшны

    – Современные автомобили с турбинными двигателями не предполагают каких-то особых условий эксплуатации. Раньше нельзя было сразу глушить машину, нужно было дать турбине остыть. Низких оборотов турбина не боится. Хотя сейчас моторы усовершенствованы и системы охлаждения на современные ДВС ставят инновационные, долго с включенной турбиной ездить не стоит, ресурс турбонагнетателя снижается.

    Из-за резких ускорений и торможений турбина не страдает, поскольку у современных узлов есть клапаны сброса давления, которые ограничивают подачу воздуха и предотвращают детонацию, а также перепускной клапан, который поддерживает постоянное вращение компрессорного колеса, чтобы избежать эффекта турбоямы, оставив последующий быстрый отклик.

    Не жмите газ для быстрого прогрева

    – Пока двигатель не прогреется хотя бы до +50…+60 °С, не стоит его сильно нагружать. А вот когда прогреется, зазоры тепловые достигают заданных параметров, смазка и масло моторное тоже прогреваются. В общем, только заведя машину, не стоит сразу жать на газ, чтобы она быстрее прогрелась. В таком случае отработанные газы (а они горячие) начнут воздействовать на турбину, а из-за того, что масло недостаточно прогрето, оно хуже циркулирует в системе, что в итоге приводит к перегреву и повышенному износу турбины.

    Глушить машину сразу после динамичной поездки не стоит

    – Не надо глушить автомобиль с турбинным двигателем сразу после поездки, если во время езды вы активно использовали турбину, разогревая ее до сотен градусов. Если во время езды турбина подвергалась высоким нагрузкам, то пусть мотор 3–5 минут поработает на холостых оборотах. В этом случае работает масляный насос, масло циркулирует, отводит тепло и разводит смазку по турбине, которая по инерции вращается.

    Эксплуатация ДВС на высоких оборотах приводит к тому, что турбокомпрессор совершает 100, а то и 250 тыс. оборотов в минуту. Если сразу двигатель выключить, то из-за перепада температуры в турбине, она быстрее из строя выйдет. Жар от турбины попадает в корпус подшипника, от этого карбонизируется масло, появляются отложения в системе подшипников, вал турбины повреждается. Но если эксплуатировать автомобиль в спокойном режиме, в городе в том числе, то никаких ограничений по времени выключения двигателя нет.

    Как устроен газотурбинный двигатель

    Газотурбинный двигатель: конструкция, назначение, принцип работы

    Газотурбинный двигатель: конструкция, назначение, принцип работы

    Газотурбинными двигателями оснащаются реактивные самолеты, вертолеты, наконец, танки (вспомните наш Т-80). Но чтобы такой мотор ставился на грузовики и автобусы? А между тем еще недавно газовую турбину рассматривали как альтернативу дизелю! И вот что из этого получилось.
    Мне повезло: я был свидетелем расцвета и заката cамых последних в мире газотурбинных грузовика и автобуса! Их дебют состоялся в уже далеком 1995 году на Парижском салоне грузовиков. Помнится, тогда французы очень боялись террористов, дотошно досматривая сумки при входе в каждый павильон.
    У концепт-трака Chevrolet Turbo Titan III вместо руля стояли два мини-штурвала.
    Так вот: там под переливающимися полосами света красовались экспериментальные Volvo — грузовик ECT (Environmental Concept Truck, «экологически чистый концепт-трак») и ECB (то же, только Bus, «автобус»). Их появление было равносильно тому, если бы посреди Парижа приземлились две летающие тарелки!
    У обоих — обтекаемые обводы (грузовику специально придали сходство с дельфином), невиданные тогда фонари со светодиодами, видеокамеры вместо зеркал заднего вида, активная подвеска (причем передняя — независимая), дисковые тормоза с АБС (не забывайте: это была середина девяностых), дисплей вместо щитка приборов. И главное — гибридный привод, где колеса крутил электромотор, а ток для него вырабатывала газовая турбина, соединенная с генератором.
    В музее Volvo хранятся «концепты» Парижского салона 1995 года — грузовик и автобус с гибридным газотурбинно-электрическим приводом.
    Цитирую Энциклопедический словарь юного техника: «Газотурбинные двигатели, ГТД, в частности работают на современных самолетах (реактивные двигатели). Воздух в ГТД сжимается компрессором и подается в камеру сгорания, в которую вводится жидкое топливо или горючий газ. Нагретый сжатый газ вращает турбину. Часть своей работы турбина отдает компрессору, сжимающему воздух, а часть — потребителю: электрогенератору, винту или реактивной струе на самолете, колесу автомобиля и т.д. Благодаря хорошей экономичности, компактности, надежности и большой мощности турбины практически вытеснили паровые машины из мировой энергетики».
    оложим, насчет экономичности составители словаря явно погорячились, зато насчет всего остального, особенно компактности — чистая правда! Неудивительно, что у Volvo ECT двигатель удалось разместить под рамой, рядом с батареей аккумуляторов, — а питаться он должен был натуральным газом или даже этанолом.
    Тогдашняя статья в Авторевю об этих машинах заканчивалась так: «Жаль, что красавцы, на создание которых затрачено 15 миллионов немецких марок и 18 месяцев кропотливого труда, закончат свой век где-нибудь на задворках экспериментального цеха. В лучшем случае они попадут в заводской музей».

    Я как в воду глядел. Обе машины действительно попали в музей Volvo, где я их недавно видел в очередной раз. В одном из залов навечно припаркован автобус, за стеной, припав на «брюхо» (под днище еле пролезают два пальца!), притулился грузовик со «спущенной» подвеской. Грустная картина. Но — закономерная, и сейчас станет понятно, почему.
    Двигатель был разработан аэрокосмическим подразделением Volvo Aero
    Начало истории
    Теперь давайте перенесемся в 1950 год, в Москву, где по широким улицам раскатывают Победы, ЗИМы, грузовые «газоны». А на прилавках книжных магазинов лежит книга известного конструктора и дизайнера Юрия Аароновича Долматовского «Повесть об автомобиле». Откроем?

    Изображение
    Турбина занимала так мало места, что казалось, будто у тягача Kenworth нет двигателя! (1950 г.)

    «Все более определенно вырисовывается облик будущего автомобиля. Все в нем стройно, закономерно. Двигатели отличаются от прежних, как небо от земли. Это турбинки величиной с телефонный аппарат, они питаются дешевыми сортами топлива…»

    Утопия? Для советских конструкторов тех лет — да. Но «американская военщина» к тому времени уже полным ходом вела адаптацию аналога реактивного двигателя Boeing к наземной технике!

    Испытания решили проводить в гражданских условиях, и в том же 1950 году Boeing совместно с фирмой Kenworth успешно инсталлировали под капот магистрального тягача 175-сильную газовую турбинку. Весила она всего 200 фунтов (91 кг) — в тринадцать раз меньше, нежели дизель аналогичной мощности. А места занимала столько, что казалось, будто под капотом двигателя нет вовсе!
    В архиве журнала Life сохранились снимки той машины: особенно впечатляют кадры со снятым носовым оперением, сделанные на шоссе. Наверняка встречные водители сворачивали шеи в изумлении: «Что за диво? Грузовик едет без мотора!» А уж что творилось в местах остановки машины — словами не описать: фотограф запечатлел толпы водителей, разглядывающих диковинку.
    Изображение
    «Что это под капотом? Турбина? Невероятно!»

    Забавно, что в истории компании Kenworth говорится, что испытания якобы проходили «с наглухо закрытым моторным отсеком» и «в обстановке полной секретности»!

    Газотурбинный Kenworth пересек США с севера на юг, затем некоторое время работал на коммерческих перевозках, курсируя по западному побережью, между Сиэтлом и Лос-Анджелесом. Но испытания, увы, провалились. Прежде всего, рейс длился на пять-шесть часов дольше, нежели с обычным дизельным тягачом: газотурбинный очень медленно разгонялся, сильно дымил, а выжим педали сцепления был настоящим мучением (при том, что у старых «американцев» сцепление и без того тугое). Но главное, турбина пожирала топливо так, словно это был не тягач, а стратегический бомбардировщик: расход равнялся миле на галлон, или же 235 л/100 км!

    Неудивительно, что проект был свернут, тем более что Kenworth и армия к тому времени переключились на разработку «атомного тягача» для транспортировки баллистических ракет. О газовой турбине, казалось, забыли, но ненадолго.

    Турбинная лихорадка
    В шестидесятых годах «турбинная лихорадка» вспыхнула в Штатах с новой силой. Компании начали строить настоящие «грузовики будущего», оборудованные такими двигателями, и наиболее известным среди них стал Ford Big Red («большой красный») 1964 года. Экспериментальный 30-метровый автопоезд состоял из тягача и двух трейлеров, а его экипаж чувствовал себя словно в самолете. В кабину вели выдвижная лесенка с электроприводом и дверь с пневмоприводом, водитель восседал за пультом, в оснащение входили кондиционер, холодильник, микроволновка и телевизор. Невиданное явление по тем временам! 600-сильная турбина лихо разгоняла 77-тонный состав, и звук двигателя был точь-в-точь самолетным. Одной заправки (тысяча литров солярки) хватало примерно на столько же километров, то есть расход равнялся 100 л/100 км. Немало, но, учитывая впечатляющую массу, вполне закономерно.
    Изображение
    Турбина Boeing была в тринадцать раз легче тогдашнего дизеля

    Изображение
    «Грузовики будущего» 1964 года: Chevrolet Bison (две его турбины расположены над кабиной)…

    Изображение
    …и Ford Big Red. Хорошо видны пульт управления и выдвижная лесенка

    В том же году на Всемирной ярмарке в Нью-Йорке концерн General Motors показал совсем уж фантастический грузовик — четырехосный Chevrolet Bison с приплюснутой кабиной. Ни дать ни взять космический аппарат! Да еще с двумя турбинами общей мощностью в 1000 л.с. (они располагались прямо над кабиной): одна, 300-сильная, работала постоянно, а при разгоне и на подъемах к ней подключалась вторая, 700-сильная. А знаете, как здесь был устроен грузовой отсек? Задняя двухосная тележка пристыковывалась к ведущей «голове» (то есть грузовик был переднеприводным!), а в пространстве между осями располагались обтекаемые контейнеры.

    Но разработчики и сами понимали, что сотворили нечто невероятное, а потому в следующем году построили более традиционный с виду автопоезд — Turbo Titan III. Здесь турбина развивала всего 280 л.с., зато уже была проверенной (ее разработка длилась 15 лет, и за три года до Титана она испытывалась на обычном тягаче.)

    Впрочем, Turbo Titan III тоже поражал своими решениями: достаточно сказать, что коробка передач была автоматической, фары выдвигались из жабр-воздухозаборников по бокам стеклопластиковой кабины, а руль заменяли… два мини-штурвала на «космической» консоли. Как с их помощью управляли тягачом — ума не приложу!

    Кроме того, Turbo Titan III стал первым в мире грузовиком, на котором стояло стереофоническое радио FM с четырьмя динамиками. А еще тут был — вы не поверите! — мобильный телефон. В 1965 году!

    Но одними грузовиками дело не закончилось: в редакции хранится статья из журнала Popular Science за 1969 год о газотурбинном автобусе RTX, Rapid Transit Experimental. Вот что в ней написано.

    «Хотели бы вы завернуть за угол дома и поехать на работу с первоклассным комфортом, как в реактивном лайнере Boeing? Едете в тишине, которую нарушает только свист турбины, идете по мягкому ковру, слушаете стереофоническую музыку, вдыхаете кондиционированный воздух. И это — реальность!» Далее автор статьи пишет: «У автобуса только две педали, одна для тормозов с масляным охлаждением (еще одна новинка), другая для 280-сильной турбины. Разгон плавный, без рывков, двигатель работает тише обычного, на ходу автобус не шатает, а кварцево-йодные лампы освещают дорогу почти на километр вперед. Вы спросите: когда RTX появится на автобусной остановке? Это может произойти уже через пять лет».

    Справедливости ради упомянем бескапотные тягачи, не отличимые с виду от серийных, под стандартными кабинами которых скрывалась турбина. Тот же General Motors создал тягач GMC Astro 95 Gas Turbo Special, а Freightliner построил аж десять опытных образцов.

    В таком виде «газотурбинный вирус» проник и в Европу. Больше всех «баловались турбинами» англичане: только Leyland построил три образца (очень динамичных, но столь же прожорливых), свою машину создал европейский Ford. Существовал даже «турбоMAN» с двумя здоровенными выхлопными трубами за кабиной. Их наличие неудивительно: температура и количество выхлопных газов турбины намного больше, нежели у поршневого двигателя.
    Изображение
    Экспериментальный MAN отличался здоровенной выхлопной системой за кабиной

    При этом все фирмы мечтали, что однажды им удастся разрешить существующие проблемы — и вот тогда-то турбина, легкая, компактная и долговечная, придет на смену дизелю.

    За «железным занавесом»
    Помните давнюю книгу Долматовского? Сказка стала былью в 1959 году, когда на базе автобуса ЗИС-127 был построен опытный ТурбоНАМИ-053. Его турбина была почти в два раза мощнее, нежели дизель (350 л.с. против 180 л.с.), и разгоняла автобус до фантастических 160 км/ч. Представляете — по тогдашним-то дорогам? Но автобус вскоре прозвали «пожирателем топлива». Нетрудно догадаться, почему!

    Тем не менее работы продолжались, и в 1970 году Госкомитет по науке и технике утвердил план внедрения таких моторов: к нему были подключены ГАЗ, МАЗ, МоАЗ, БелАЗ и КрАЗ. В Горьком было создано семейство газотурбинных двигателей ГАЗ-99 мощностью до 250 л.с. — и начались эксперименты.
    Изображение
    Таким в 1950 году советские конструкторы представляли автомобиль с турбиной

    Изображение
    Первый автомобиль с ГТД в нашей стране — ТурбоНАМИ-053 (1959 г.) Рисунок Александра Захарова

    Еще за год до принятия «газотурбинного плана» БелАЗ создал 120-тонный самосвальный автопоезд с могучей турбиной из Ярославля (она развивала 1200 л.с.), а в 1973 году был построен первый газотурбинный МАЗ. Коллега Алексей Воскресенский, работавший в НАМИ, видел одну из тех минских машин — седельный тягач — в начале девяностых: «Она стояла под деревом, двигатель завели пару раз — ветки и засохли. Жар от вертикальной выхлопной трубы был ого-го каким!»
    Изображение
    Первый в СССР газотурбинный грузовик — БелАЗ-549В грузоподъемностью 120 т (1969 г.)

    На КрАЗе вначале хотели поставить турбину на древний самосвал КрАЗ-256 с «деревянной» кабиной, но мощность двигателя была слишком мала, к тому же он просто не влез бы под капот. Советская турбина — это вам не американская! К тому же ей требовался громоздкий понижающий редуктор: вал вращался со скоростью аж 35 тысяч об/мин, чего не выдержала бы ни одна трансмиссия.

    Но к тому времени завершились испытания КрАЗа-260 с «железной» кабиной, ГАЗ довел мощность агрегата до 350 л.с., финансирование проекта взяло на себя Министерство обороны (что неудивительно). Поскольку подходящих сцепления и коробки передач в СССР не было, их купили в Венгрии — и в итоге на свет появился монстр, названный КрАЗ-Э260Е. Его капот был длиной едва ли не с половину кузова!
    Изображение

    Вначале конструкторы обрадовались: двигатель весил вдвое меньше, нежели привычный ЯМЗ, выхлоп был чище в 3—6 раз, расход топлива на номинальных режимах… Нет, не выше, а на целых 20% ниже, чем у дизеля.

    Известно, что машина прошла 2500 км, а больше всего хлопот доставляла венгерская трансмиссия: как указано в книге по истории завода, «она не выдерживала никакой критики».

    В 1976 году был построен второй экземпляр уже с нормальным оперением: агрегат удалось сделать более компактным. В то же время мощность была увеличена еще на 10 л.с., а расход топлива в установившемся режиме был совсем скромным — в 1,4 раза меньше, нежели у дизеля.

    Изображение
    Длинноносый КрАЗ-Э260Е был построен в 1974 г.

    Изображение
    Второй экземпляр, уже с обычным оперением — КрАЗ-2Э260Е (1976 г.)

    Изображение
    Двигатель ГАЗ-99ДМ в моторном отсеке КрАЗа-Э260Е

    А вот на переходных режимах (разгон—торможение) турбина пожирала солярку со страшной силой. Теперь понятно, почему газотурбинный двигатель отлично зарекомендовал себя в промышленных установках: им же не надо постоянно разгоняться и тормозить! К этой проблеме добавились и другие, вполне закономерные: динамика оставляла желать лучшего, трансмиссия постоянно ломалась. На этом кразовские эксперименты завершились.
    Изображение

    Зато военные еще долго пытались приспособить турбину «под себя»: ведь с 1976 года на вооружении стоял газотурбинный танк Т-80! Поэтому еще в 1978 году в Минске был построен опытный шестиосный МАЗ-547Э, а настоящим апофеозом «газотурбинной» темы стали два шасси 1985 года — МАЗ-7907 с ужасающей габаритной длиной 30 м и не менее ужасающей колесной формулой 24х24. У этих гигантов поворачивались колеса восьми осей (с первой по четвертую и с девятой по двенадцатую), модернизированный танковый ГТД развивал 1250 л.с., вращая генератор, который вырабатывал ток для электромоторов на каждом колесе, а грузоподъемность равнялась 150 т — при том, что само шасси весило 66 т.
    Изображение
    Ракетовозы МАЗ-7907 были, пожалуй, самыми тяжелыми «газотурбинниками» в мире. Сейчас от них осталась груда металлолома

    Как утверждают историки, комплекс называли «наш ответ Рейгану»: на него должна была монтироваться баллистическая ракета (представляете, каких габаритов?) комплекса Целина-2. Но пока шли испытания, холодная война закончилась, и единственное, что удалось одному из монстров, — через десять лет после постройки, в 1995 году, перевезти 40-метровый и 100-тонный корабль из Борисова на озеро Нарочь.

    Говорят, оба экземпляра до сих пор стоят на территории МЗКТ, но уже в виде огромной груды металлолома, в которой с трудом можно различить несостоявшуюся гордость ракетчиков…
    _____________________________________________________________________________________________
    — Итак, уважаемый адвокат: что вы скажете в защиту газотурбинного двигателя?

    — О, у него масса преимуществ перед дизелем! Помимо уже упомянутых массы и габаритов ГТД заметно тише и лишен вибраций (ведь здесь нет поршней, ходящих вверх-вниз). «С места в карьер» ГТД способен развить полный крутящий момент — и, если бы не слишком высокие обороты, ему бы не нужна была коробка передач. Он неприхотлив: может работать и на дешевой «соляре», и на керосине, и на газу — в общем, на всем, что горит.

    Газовая турбина экологична — благодаря тому, что потребляет в четыре раза больше воздуха, нежели дизель. Ей не требуется громоздкой системы охлаждения, при низких температурах она лучше запускается, и чем ниже температура, тем выше ее удельные мощность и КПД. Наконец, она почти не требует обслуживания: ей не надо менять масло и количество изнашивающихся деталей сведено к минимуму.

    — Судья, ваше слово!

    — Все это так. Но один-единственный недостаток, расход топлива, сводит на нет все преимущества. И потому приговор — вечная ссылка из автомобилестроения в другие области транспорта и энергетики.

    История завершилась? Как ни странно, нет — поскольку в США существует фирма, называющаяся Turbine Truck Engines. Как утверждается на интернет-сайте фирмы, за десять лет ею создано пять «грузовых» газотурбинных двигателей-прототипов (последний, 540-сильный — в 2007 году). Правда, ни одного грузовика с таким мотором не построено, да и фотографий агрегатов нет: существуют ли они на самом деле?

    Тем не менее в январе прошлого года активные «турбинщики» даже посетили Китай, чтобы «передать туда свои передовые технологии». Но можем заверить читателей: ни китайских, ни каких-либо иных газотурбинных грузовиков уже не будет. Никогда.

    Газотурбинный двигатель — представляет собой тепловой силовой агрегат, который осуществляет свою работу по принципу реорганизации тепловой энергии в механическую.

    Ниже подробно рассмотрим, как работает газотурбинный двигатель, а также его устройство, разновидности, преимущества и недостатки.

    Газотурбинный двигатель: конструкция, назначение, принцип работы

    Отличительные черты газотурбинных двигателей

    Сегодня наиболее широко подобный тип моторов используется в авиации. Увы, но из-за особенностей устройства они не могут применяться для обычных легковых автомобилей.

    По сравнению с другими агрегатами внутреннего сгорания газотурбинный движок обладает наибольшей удельной мощностью, что является его основным плюсом. Помимо этого такой двигатель способен функционировать не только на бензине, но и на множества других видах жидкого горючего. Как правило, он работает на керосине либо на дизельном горючем.

    Газотурбинный и поршневой двигатель, которые устанавливаются на «легковушках» за счет сжигания топлива изменяют химическую энергию горючего в тепловую, а затем и в механическую.

    Но сам процесс у данных агрегатов немного различается. И в том и в другом движке сначала осуществляется забор (то есть воздушный поток поступает в мотор), затем происходит сжатие и впрыск горючего, после этого ТВС загорается, вследствие чего сильно расширяется и в результате выбрасывается в атмосферу.

    Различие состоит в том, что в газотурбинных аппаратах все это проходит в одно время, но в различных частях агрегата. В поршневом же все осуществляется в одной точке, но по очередности.

    Проходя через турбинный мотор, воздух сильно сжимается в объеме и благодаря этому увеличивает давление почти в сорок раз.

    Газотурбинный двигатель: конструкция, назначение, принцип работы

    Единственное движение в турбине это вращательное, когда как в иных агрегатах внутреннего сгорания, помимо вращения коленвала также происходит движение поршня.

    КПД и мощность газотурбинного двигателя выше чем у поршневого, несмотря на то, что вес и размеры меньше.

    Для экономного потребления топлива газовая турбина оснащена теплообменником — диском из керамики, который функционирует от двигателя с небольшой частотой вращения.

    Устройство и принцип работы агрегата

    По своей конструкции движок не очень сложный, он представлен камерой сгорания, где оборудованы форсунки и свечи зажигания, которые необходимы для подачи горючего и добычи искрового заряда. Компрессор оснащен на валу вместе с колесом, обладающим особыми лопатками.

    Помимо этого мотор состоит из таких составляющих как — редуктор, канал впуска, теплообменник, игла, диффузор и выпускной трубопровод.

    Во время вращения компрессорного вала, воздушный поток, поступающий через канал впуска, захватывается его лопастями. После увеличения скорости компрессора до пятисот м в секунду, он нагнетается в диффузор. Скорость у воздуха на выходе диффузора снижается, но давление увеличивается. Затем воздушный поток оказывается в теплообменнике, где происходит его нагрев за счет отработанных газов, а после этого воздух подается в камеру сгорания.

    Вместе с ним туда попадает горючее, которое распыляется через форсунок. После того как топливо перемешивается с воздухом, создается топливно-воздушная смесь, которая загорается благодаря искре получаемой от свечи зажигания. Давление в камере при этом начинает увеличиваться, а турбинное колесо приводится в действие за счет газов попадающих на лопатки колеса.

    Газотурбинный двигатель: конструкция, назначение, принцип работы

    В итоге осуществляется передача крутящего момента колеса на трансмиссию авто, а отходящие газы выбрасываются в атмосферу.

    Плюсы и минусы двигателя

    Газовая турбина, как и паровая, развивает большие обороты, что позволяет ей набирать хорошую мощность, несмотря на свои компактные размеры.

    Охлаждается турбина очень просто и эффективно, для этого не нужно каких-либо дополнительных приборов. У нее нет трущихся элементов, а подшипников совсем немного, за счет чего движок способен функционировать надежно и долгое время без поломок.

    Главный минус подобных агрегатов в том, что стоимость материалов, из которых они изготавливаются довольно высокая. Цена на ремонт газотурбинных двигателей тоже немалая. Но, несмотря на это они постоянно совершенствуются и разрабатываются во многих странах мира, включая нашу.

    Газовую турбину не устанавливают на легковые автомобили, прежде всего из-за постоянной нужды в ограничении температуры газов, которые поступают на турбинные лопатки. Вследствие этого понижается КПД аппарата и повышается потребление горючего.

    Сегодня уже придуманы некоторые методы, которые позволяют повысить КПД турбинных двигателей, например, с помощью охлаждения лопаток или применения тепла выхлопных газов для обогрева воздушного потока, который поступает в камеру. Поэтому вполне возможно, что через некоторое время разработчики смогут создать экономичный двигатель своими руками для автомобиля.

    Газотурбинный двигатель: конструкция, назначение, принцип работы

    Среди главных преимуществ агрегата можно также выделить:

    • Низкое содержание вредоносных веществ в выхлопных газах;
    • Простота в обслуживании (не нужно менять масло, а все детали обладают износостойкостью и долговечностью);
    • Нет вибраций, поскольку есть возможность запросто сбалансировать вращающейся элементы;
    • Низкий уровень шума во время работы;
    • Хорошая характеристика кривой крутящего момента;
    • Заводиться быстро и без затруднений, а отклик двигателя на газ не запаздывает;
    • Повышенная удельная мощность.

    Виды газотурбинных двигателей

    По своему строению данные агрегаты разделяются на четыре типа. Первый из них это турбореактивный, его в большинстве своем устанавливают на военные самолеты, обладающие высокой скоростью. Принцип работы заключается в том, что газы, выходящие на большой скорости из мотора, через сопло толкают самолет вперед.

    Другой тип — турбиновинтовой. Его устройство от первого отличается тем, что он имеет еще одну секцию турбины. Данная турбина составлена из ряда лопаток, которые забирают остаток энергии у газов, прошедших через турбину компрессора и благодаря этому осуществляют вращение воздушного винта.

    Винт может располагаться как в задней части агрегата, так и в передней. Отходящие газы выводятся через выхлопные трубы. Такой реактивный аппарат оснащается на самолетах, летающих на низкой скорости и на малой высоте.

    Газотурбинный двигатель: конструкция, назначение, принцип работы

    Третий тип — турбовентиляторный, который похож по своей конструкции на предыдущий двигатель, но у него 2-я турбинная секция забирает энергию у газов не полностью и поэтому подобные движки также обладают выхлопными трубами.

    Главная особенность такого двигателя в том, что его вентилятор, закрытый в кожух, работает от турбины низкого давления. Поэтому движок называют еще 2-х контурным, поскольку воздушный поток проходит через агрегат, являющейся внутренним контуром и через свой внешний контур, необходимый только лишь для направления потока воздуха, который толкает мотор вперед.

    Самые новейшие самолеты оборудованы именно турбовентиляторными двигателями. Они эффективно функционируют на большой высоте, а также отличаются экономичностью.

    Последний тип — турбовальный. Схема и устройство газотурбинного двигателя этого типа почти такая же, как и у прошлого движка, но от его вала, который присоединен к турбине, приводится в действие практически все. Чаще всего его устанавливают в вертолеты, и даже на современные танки.

    Двухпоршневой и малоразмерный двигатель

    Наиболее распространен двигатель с двумя валами, оборудованный теплообменником. В сравнении с агрегатами, у которых всего 1 вал, такие аппараты более эффективные и мощные. 2-х вальный двигатель оснащен турбинами, одна из которых предназначена для привода компрессора, а другая для привода осей.

    Газотурбинный двигатель: конструкция, назначение, принцип работы

    Подобный агрегат обеспечивает машине хорошие динамические характеристики и сокращает кол-во скоростей в трансмиссии.

    Также существуют малоразмерные газотурбинные двигатели. Они состоят из компрессора, газо-воздушного теплообменника, камеры сгорания и двух турбин, одна из которых находятся в одном корпусе со сборником газа.

    Малоразмерные газотурбинные двигатели применяются в основном на самолетах и вертолетах, которые преодолевают большие расстояние, а также на беспилотных летательных устройств и ВСУ.

    Агрегат со свободно поршневым генератором

    На сегодняшний день аппараты этого типа являются наиболее перспективными для авто. Устройство движка представлено блоком, который соединяет поршневой компрессор и 2-х тактовый дизель. В середине находится цилиндр с наличием двух поршней объединенных друг с другом с помощью специального приспособления.

    Работа движка начинается с того, что воздух сжимается во время схождения поршней и происходит возгорание горючего. Газы образуются за счет сгоревшей смеси, они способствуют расхождению поршней при повышенной температуре. Затем газы оказываются в газо-сборнике. За счет продувочных щелей в цилиндр попадает пережатый воздух, помогающий очистить агрегат от отработанных газов. Затем цикл начинается заново.

    газотурбинный двигатель — гтд Тепловая машина, предназначенная для преобразования энергии сгорания топлива в кинетическую энергию реактивной струи и (или) в механическую работу на валу двигателя, основными элементами которой являются компрессор, камера сгорания и газовая… … Справочник технического переводчика

    Газотурбинный двигатель — (ГТД) тепловая машина, предназначенная для преобразования энергии сгорания топлива в кинетическую энергию реактивной струи и (или) в механическую работу на валу двигателя, основными элементами которой являются компрессор, камера сгорания и… … Энциклопедия техники

    ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ — (ГТД), тепловой двигатель, в котором энергия газовоздушной смеси, получаемой при сгорании топлива в камере сгорания, преобразуется в механическую работу с помощью газовой турбины. Применяется в основном на теплоэлектроцентралях для привода… … Современная энциклопедия

    ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ — (ГТД) тепловой двигатель, в котором энергия газовоздушной смеси, получаемой при сгорании топлива в камере сгорания, преобразуется в механическую работу с помощью газовой турбины. Применяется в основном на ТЭЦ для привода электрогенераторов, в… … Большой Энциклопедический словарь

    Газотурбинный двигатель — (ГТД), тепловой двигатель, в котором энергия газовоздушной смеси, получаемой при сгорании топлива в камере сгорания, преобразуется в механическую работу с помощью газовой турбины. Применяется в основном на теплоэлектроцентралях для привода… … Иллюстрированный энциклопедический словарь

    Газотурбинный двигатель — Газотурбинный двигатель; ГТД: машина, предназначенная для преобразования тепловой энергии в механическую. Примечание ГТД может состоять из одного или нескольких компрессоров, теплового устройства, предназначенного для повышения температуры… … Официальная терминология

    газотурбинный двигатель — 3.7 газотурбинный двигатель; ГТД: Машина, предназначенная для преобразования тепловой энергии в механическую. Примечание ГТД может состоять из одного или нескольких компрессоров, теплового устройства, предназначенного для повышения температуры… … Словарь-справочник терминов нормативно-технической документации

    ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ — (ГТД) тепловой двигатель, в к ром газ сначала подвергается сжатию и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механич. работу ыа валу газовой турбины. Наибольшее пром. применение получили ГТД с непрерывным сгоранием… … Большой энциклопедический политехнический словарь

    Газотурбинный двигатель — (ГТД) тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Рабочий процесс ГТД может осуществляться с непрерывным сгоранием… … Большая советская энциклопедия

    газотурбинный двигатель — авиационный газотурбинный двигатель; газотурбинный двигатель Тепловая машина, предназначенная для превращения тепла в кинетическую энергию реактивной струи и в механическую работу на валу двигателя, основными элементами которой (машины) являются … Политехнический терминологический толковый словарь

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *