Что такое ф в физике в электричестве
Перейти к содержимому

Что такое ф в физике в электричестве

  • автор:

Электричество Основные формулы

Закон Кулона

q1, q2 — величины точечных зарядов,
r — расстояние между зарядами.

1.2 Напряженность поля уединенного точечного заряда

Напряженность поля уединенного точечного заряда

q — величина уединенного точечного заряда,
r — расстояние от заряда.

1.3 Потенциал точки в поле точечного заряда

Потенциал точки в поле точечного заряда

q — величина уединенного точечного заряда,
r — расстояние от заряда.

1.4 Потенциальная энергия заряда в электростатическом поле

Потенциальная энергия заряда в электростатическом поле

φ — потенциал,
q1 — величина заряда.

1.5 Потенциальная энергия заряда q1 в поле точечного заряда

Потенциальная энергия заряда в поле точечного заряда

q — величина уединенного точечного заряда, который создает поле,
r — расстояние между зарядами.

1.6 Теорема Гаусса

Теорема Гаусса

N — поток вектора напряженности электрического поля через замкнутую поверхность,
q — полный заряд, находящийся внутри замкнутой поверхности.

1.7 Напряженность электрического поля вблизи от поверхности проводника

Напряженность электрического поля вблизи от поверхности проводника

σ — поверхностная плотность заряда.

1.8 Емкость плоского кондесатора

Емкость плоского кондесатора

q — заряд конденсатора,
U — модуль разности потенциалов между обкладками.

1.9 Энергия плоского кондесатора

Энергия плоского кондесатора

q — заряд конденсатора,
U — модуль разности потенциалов между обкладками.

2. Постоянный электрический ток
2.1 Закон Ома для участка однородной цепи

Закон Ома для участка однородной цепи

U — напряжение на концах участка,
R — сопротивление участка цепи.

2.2 Закон Ома для замкнутой цепи с источником тока

Закон Ома для замкнутой цепи с источником тока

ЭДС

— ЭДС (электродвижущая сила),
r — внутреннее сопротивление источника ЭДС.

2.3 Работа постоянного тока

Работа постоянного тока

U — напряжение на концах участка цепи,
t — время, за которое совершается работа.

2.4 Закон Джоуля-Ленца

Закон Джоуля-Ленца

Q — теплота,
R — сопротивление проводника,
t — время, за которое выделяется теплота.

2.5 Полная мощность, развиваемая источником тока

Полная мощность, развиваемая источником тока

ЭДС

— ЭДС источника тока,
R — сопротивление цепи,
r — внутреннее сопротивление источника тока.

2.6 Полезная мощность

Полезная мощность

ЭДС

— ЭДС источника тока,
R — сопротивление цепи,
r — внутреннее сопротивление источника тока.

2.7 Коэффициент полезного действия источника тока

Коэффициент полезного действия источника тока

R — сопротивление цепи,
r — внутреннее сопротивление источника тока.

2.8 Первое правило Кирхгофа

Первое правило Кирхгофа

n — число проводников, сходящихся в узле;
Ik — сила тока в k-м проводнике.

2.9 Второе правило Кирхгофа

Второе правило Кирхгофа

n — число неразветвленных участков в контуре;
m — число ЭДС в контуре.

Что такое фаза и ноль в электричестве

Электрическая фаза колебаний в электротехнике — это аргумент колебательной функции, то есть угол, на который смещены колебания значения ЭДС в пространстве относительно нуля.

Различают начальную фазу $φ_0$, описывающую начало колебательного процесса в нулевое время и полную фазу, описывающую состояние колебательного процесса в любой момент времени.

Пример уравнения c полной фазой, которое может описывать колебательный процесс: $cos(ωt + βx + φ_0)$. В момент времени, равный $t = 0$, угол колебаний составит $φ_0$, а если колебание начинается в точке с координатами $(0;0)$, то уравнение будет иметь вид типа $cos(φ_0)$.

Чаще всего для электроснабжения жилья используются трёхфазные системы электроснабжения, фазовый угол между генерируемыми ЭДС в которых равен $\frac$ или $120°$.

Что такое фаза в электричестве — определение понятия

Статья: Что такое фаза и ноль в электричестве

Найди решение своей задачи среди 1 000 000 ответов

Фаза в электричестве — это разговорное название провода, находящегося под напряжением относительно другого, который называют нуль. Это название произошло из-за того что вырабатываемый на подстанциях ток, подающийся в дома, является переменным, то есть ЭДС, создаваемые на подстанциях, имеют одну и ту же частоту (для России и стран СНГ она составляет 50 Гц), но сдвинуты относительно друг друга во времени на определённый фазовый угол. В дома обычно подаются все три фазы и нет никакого значения, к какой фазе подключена ваша квартира.

Рисунок 1. Электрика и электричество – схематическое изображение фазы, нуля и земли

На рис. 1 схематично нарисована схема проведения электрического тока в квартиру от общей системы. Буквами $L1$, $L2$, $L3$ обозначены 1-3 фазы, а буквой $N$ — нулевой провод.

«Что такое фаза и ноль в электричестве» ��
Помощь эксперта по теме работы
Решение задач от ИИ за 2 минуты
Помощь с рефератом от нейросети

На рис. 2 показано схематическое подключение тока к квартире от трасформатора, буквой $L_T$ обозначена фаза на трансформаторе, буквой $L$ — фаза в квартире, а буква $R_H$ — это подключенный электроприбор, обладающий некоторым сопротивлением $R_H$.

От трансформатора идёт 2 провода, один — так называемый фазовый провод с напряжением, а другой – нулевой провод, от которого отведено заземление, осуществляемое помещением контакта в землю. Существуют и другие источники заземления помимо собственно земли, на данных рисунках заземление обозначено буквами $Змл$.

На рис. 3 изображён случай, когда нулевой заземлённый провод не проведён в квартиру от подстанции, а заземлён непосредственно в квартире. Напряжение $L_T$ между нулём и фазой будет одинаково для рисунков 2 и 3, однако, не рекомендуется заземлять напряжение от трансформатора непосредственно в квартире.

Что такое ноль в электричестве — определение

Ноль – это провод, необходимый для замыкания электрического контура, по нему ток возвращается к источнику.

Для чего нужен ноль в электричестве? Ноль в электричестве нужен для равномерного распределения напряжения между фазами. При отсутствии нулевого провода напряжение между фазовыми проводами будет распределяться неравномерно, в результате чего на одной фазе может быть повышенное напряжение, которое может привести к пожару, а на других – пониженное, с которым часть электроприборов может не работать или работать некорректно. Для ноля также используются другие названия – его называют нейтральным или нулевым контактом.

Что такое нулевая фаза в электричестве

Нулевая фаза – это ещё одно народное название нулевого провода, не стоит путать его с землёй.

Ток в нулевом проводе не всегда равен нулю, он будет ненулевым при подключении электроприборов.

Что такое «земля» в электричестве

«Земля» – это провод, отводимый от нулевого, используемый для безопасности. Суть в том, что в случае обрыва электрической цепи или отсутствия сопротивления ток направляется в землю, что помогает избежать удара током.

Напряжение $U$ между нулевым проводом и землёй равняется нулю, тогда как напряжение между нулём и фазой для обычной квартиры будет равно $220$ В.

Электрика для чайников: фаза и ноль – что это и как определить где что

В случае, когда вы имеете дело с проводкой, состоящей из двух проводов – один из них всегда будет фазой, а второй нулём. Для того чтобы определить где какой — достаточно воспользоваться специальной пластиковой отвёрткой с индикатором.

Для этого необходимо сначала отключить электричество и развести 2 имеющихся провода во избежание короткого замыкания.

Затем нужно включить электричество обратно и аккуратно, не прикасаясь голыми руками к оголённой части проводов, приложить конец индикаторной отвёртки к проводу. Тот, на котором сработает лампочка индикаторной отвёртки, является фазой, второй провод будет нулём.

В случае же если вам приходится иметь дело с трёхжильным проводом – определить где фаза, а где ноль будет несколько сложнее. Для этого используют специальные приборы, например, можно определить где земля, а где ноль с помощью вольтметра. Для этого сначала нужно измерить напряжение $U$ по очереди между каждым из двух неизвестных проводов и фазовым проводом. Напряжение $U$ на «земле» всегда будет больше, чем на нулевом. Также можно отличить замелю от нуля с помощью омметра — сопротивление на заземлении всегда будет достаточно небольшим и будет в районе 4 Ом.

Замечание 1

Также нулевой провод, фаза и заземление обычно имеют разную расцветку. Для обозначения фазы используют чаще всего чёрную, коричневую или серую обмотку, для земли – жёлтую или зелёную, а для ноля – синюю или белую.

Что такое ф в физике в электричестве

Электрический заряд – это физическая величина, характеризующая способность частиц или тел вступать в электромагнитные взаимодействия. Электрический заряд обычно обозначается буквами q или Q. В системе СИ электрический заряд измеряется в Кулонах (Кл). Свободный заряд в 1 Кл – это гигантская величина заряда, практически не встречающаяся в природе. Как правило, Вам придется иметь дело с микрокулонами (1 мкКл = 10 –6 Кл), нанокулонами (1 нКл = 10 –9 Кл) и пикокулонами (1 пКл = 10 –12 Кл). Электрический заряд обладает следующими свойствами:

1. Электрический заряд является видом материи.

2. Электрический заряд не зависит от движения частицы и от ее скорости.

3. Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

4. Существует два рода электрических зарядов, условно названных положительными и отрицательными.

5. Все заряды взаимодействуют друг с другом. При этом одноименные заряды отталкиваются, разноименные – притягиваются. Силы взаимодействия зарядов являются центральными, то есть лежат на прямой, соединяющей центры зарядов.

6. Существует минимально возможный (по модулю) электрический заряд, называемый элементарным зарядом. Его значение:

e = 1,602177·10 –19 Кл ≈ 1,6·10 –19 Кл.

Электрический заряд любого тела всегда кратен элементарному заряду:

Формула Электрический заряд

где: N – целое число. Обратите внимание, невозможно существование заряда, равного 0,5е; 1,7е; 22,7е и так далее. Физические величины, которые могут принимать только дискретный (не непрерывный) ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда.

7. Закон сохранения электрического заряда. В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

Закон сохранения электрического заряда

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака. Из закона сохранения заряда так же следует, если два тела одного размера и формы, обладающие зарядами q1 и q2 (совершенно не важно какого знака заряды), привести в соприкосновение, а затем обратно развести, то заряд каждого из тел станет равным:

Закон сохранения электрического заряда

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному (то есть минимально возможному) заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов, или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион. Обратите внимание, что положительные протоны входят в состав ядра атома, поэтому их число может изменяться только при ядерных реакциях. Очевидно, что при электризации тел ядерных реакций не происходит. Поэтому в любых электрических явлениях число протонов не меняется, изменяется только число электронов. Так, сообщение телу отрицательного заряда означает передачу ему лишних электронов. А сообщение положительного заряда, вопреки частой ошибке, означает не добавление протонов, а отнимание электронов. Заряд может передаваться от одного тела к другому только порциями, содержащими целое число электронов.

Иногда в задачах электрический заряд распределен по некоторому телу. Для описания этого распределения вводятся следующие величины:

1. Линейная плотность заряда. Используется для описания распределения заряда по нити:

Формула Линейная плотность заряда

где: L – длина нити. Измеряется в Кл/м.

2. Поверхностная плотность заряда. Используется для описания распределения заряда по поверхности тела:

Формула Поверхностная плотность заряда

где: S – площадь поверхности тела. Измеряется в Кл/м 2 .

3. Объемная плотность заряда. Используется для описания распределения заряда по объему тела:

Формула Объёмная плотность заряда

где: V – объем тела. Измеряется в Кл/м 3 .

Обратите внимание на то, что масса электрона равна:

Закон Кулона

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь. На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных точечных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Формула Закон Кулона

где: ε – диэлектрическая проницаемость среды – безразмерная физическая величина, показывающая, во сколько раз сила электростатического взаимодействия в данной среде будет меньше, чем в вакууме (то есть во сколько раз среда ослабляет взаимодействие). Здесь k – коэффициент в законе Кулона, величина, определяющая численное значение силы взаимодействия зарядов. В системе СИ его значение принимается равным:

Силы взаимодействия точечных неподвижных зарядов подчиняются третьему закону Ньютона, и являются силами отталкивания друг от друга при одинаковых знаках зарядов и силами притяжения друг к другу при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел, равномерно заряженных сфер и шаров. В этом случае за расстояния r берут расстояние между центрами сфер или шаров. На практике закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними. Коэффициент k в системе СИ иногда записывают в виде:

Формула Электростатический коэффициент

где: ε0 = 8,85∙10 –12 Ф/м – электрическая постоянная.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции: если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Запомните также два важных определения:

Проводники – вещества, содержащие свободные носители электрического заряда. Внутри проводника возможно свободное движение электронов – носителей заряда (по проводникам может протекать электрический ток). К проводникам относятся металлы, растворы и расплавы электролитов, ионизированные газы, плазма.

Диэлектрики (изоляторы) – вещества, в которых нет свободных носителей заряда. Свободное движение электронов внутри диэлектриков невозможно (по ним не может протекать электрический ток). Именно диэлектрики обладают некоторой не равной единице диэлектрической проницаемостью ε.

Для диэлектрической проницаемости вещества верно следующее (о том, что такое электрическое поле чуть ниже):

Формула Диэлектрическая проницаемость

Электрическое поле и его напряженность

По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Электрическое поле, окружающее заряженное тело, можно исследовать с помощью так называемого пробного заряда – небольшого по величине точечного заряда, который не вносит заметного перераспределения исследуемых зарядов. Для количественного определения электрического поля вводится силовая характеристика — напряженность электрического поля E.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на пробный заряд, помещенный в данную точку поля, к величине этого заряда:

Формула Напряжённость электрического поля

Напряженность электрического поля – векторная физическая величина. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд. Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим.

Для наглядного представления электрического поля используют силовые линии. Эти линии проводятся так, чтобы направление вектора напряженности в каждой точке совпадало с направлением касательной к силовой линии. Силовые линии обладают следующими свойствами.

  • Силовые линии электростатического поля никогда не пересекаются.
  • Силовые линии электростатического поля всегда направлены от положительных зарядов к отрицательным.
  • При изображении электрического поля с помощью силовых линий их густота должна быть пропорциональна модулю вектора напряженности поля.
  • Силовые линии начинаются на положительном заряде или бесконечности, а заканчиваются на отрицательном или бесконечности. Густота линий тем больше, чем больше напряжённость.
  • В данной точке пространства может проходить только одна силовая линия, т.к. напряжённость электрического поля в данной точке пространства задаётся однозначно.

Электрическое поле называют однородным, если вектор напряжённости одинаков во всех точках поля. Например, однородное поле создаёт плоский конденсатор – две пластины, заряженные равным по величине и противоположным по знаку зарядом, разделённые слоем диэлектрика, причём расстояние между пластинами много меньше размеров пластин.

Во всех точках однородного поля на заряд q, внесённый в однородное поле с напряжённостью E, действует одинаковая по величине и направлению сила, равная F = Eq. Причём, если заряд q положительный, то направление силы совпадает с направлением вектора напряжённости, а если заряд отрицательный, то вектора силы и напряжённости противоположно направлены.

Силовые линии кулоновских полей положительных и отрицательных точечных зарядов изображены на рисунке:

Силовые линии кулоновских полей

Принцип суперпозиции

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряжённостей электрических полей, создаваемых в той же точке зарядами в отдельности:

Формула Принцип суперпозиции для электрических полей

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции. В соответствии с законом Кулона, напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю:

Формула Напряженность электрического поля точечного заряда

Это поле называется кулоновским. В кулоновском поле направление вектора напряженности зависит от знака заряда Q: если Q > 0, то вектор напряженности направлен от заряда, если Q < 0, то вектор напряженности направлен к заряду. Величина напряжённости зависит от величины заряда, среды, в которой находится заряд, и уменьшается с увеличением расстояния.

Напряженность электрического поля, которую создает заряженная плоскость вблизи своей поверхности:

Формула Напряженность электрического поля заряженной плоскости

Итак, если в задаче требуется определить напряженность поля системы зарядов, то надо действовать по следующему алгоритму:

  1. Нарисовать рисунок.
  2. Изобразить напряженность поля каждого заряда по отдельности в нужной точке. Помните, что напряженность направлена к отрицательному заряду и от положительного заряда.
  3. Вычислить каждую из напряжённостей по соответствующей формуле.
  4. Сложить вектора напряжённостей геометрически (т.е. векторно).

Потенциальная энергия взаимодействия зарядов

Электрические заряды взаимодействуют друг с другом и с электрическим полем. Любое взаимодействие описывается потенциальной энергией. Потенциальная энергия взаимодействия двух точечных электрических зарядов рассчитывается по формуле:

Формула Потенциальная энергия взаимодействия двух электрических зарядов

Обратите внимание на отсутствие модулей у зарядов. Для разноименных зарядов энергия взаимодействия имеет отрицательное значение. Такая же формула справедлива и для энергии взаимодействия равномерно заряженных сфер и шаров. Как обычно, в этом случае расстояние r измеряется между центрами шаров или сфер. Если же зарядов не два, а больше, то энергию их взаимодействия следует считать так: разбить систему зарядов на все возможные пары, рассчитать энергию взаимодействия каждой пары и просуммировать все энергии для всех пар.

Задачи по данной теме решаются, как и задачи на закон сохранения механической энергии: сначала находится начальная энергия взаимодействия, потом конечная. Если в задаче просят найти работу по перемещению зарядов, то она будет равна разнице между начальной и конечной суммарной энергией взаимодействия зарядов. Энергия взаимодействия так же может переходить в кинетическую энергию или в другие виды энергии. Если тела находятся на очень большом расстоянии, то энергия их взаимодействия полагается равной 0.

Обратите внимание: если в задаче требуется найти минимальное или максимальное расстояние между телами (частицами) при движении, то это условие выполнится в тот момент времени, когда частицы движутся в одну сторону с одинаковой скоростью. Поэтому решение надо начинать с записи закона сохранения импульса, из которого и находится эта одинаковая скорость. А далее следует писать закон сохранения энергии с учетом кинетической энергии частиц во втором случае.

Потенциал. Разность потенциалов. Напряжение

Электростатическое поле обладает важным свойством: работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

Следствием независимости работы от формы траектории является следующее утверждение: работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Свойство потенциальности (независимости работы от формы траектории) электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. А физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

Формула Определение потенциала

Потенциал φ является энергетической характеристикой электростатического поля. В Международной системе единиц (СИ) единицей потенциала (а значит и разности потенциалов, т.е. напряжения) является вольт [В]. Потенциал — скалярная величина.

Во многих задачах электростатики при вычислении потенциалов за опорную точку, где значения потенциальной энергии и потенциала обращаются в ноль, удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом: потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Вспомнив формулу для потенциальной энергии взаимодействия двух точечных зарядов и разделив ее на величину одного из зарядов в соответствии с определением потенциала получим, что потенциал φ поля точечного заряда Q на расстоянии r от него относительно бесконечно удаленной точки вычисляется следующим образом:

Формула Потенциал точечного заряда

Потенциал рассчитанный по этой формуле может быть положительным и отрицательным в зависимости от знака заряда создавшего его. Эта же формула выражает потенциал поля однородно заряженного шара (или сферы) при rR (снаружи от шара или сферы), где R – радиус шара, а расстояние r отсчитывается от центра шара.

Для наглядного представления электрического поля наряду с силовыми линиями используют эквипотенциальные поверхности. Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью или поверхностью равного потенциала. Силовые линии электрического поля всегда перпендикулярны эквипотенциальным поверхностям. Эквипотенциальные поверхности кулоновского поля точечного заряда – концентрические сферы.

Электрическое напряжение это просто разность потенциалов, т.е. определение электрического напряжения может быть задано формулой:

Формула Электрическое напряжение

В однородном электрическом поле существует связь между напряженностью поля и напряжением:

Формула Связь между напряженностью поля и напряжением

Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:

Формула Работа электрического поля как разность начальной и конечной потенциальной энергии

Работа электрического поля в общем случае может быть вычислена также и по одной из формул:

Формула Работа электрического поля

В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:

Формула Работа электрического поля в однородном поле

В этих формулах:

  • φ – потенциал электрического поля.
  • φ – разность потенциалов.
  • W – потенциальная энергия заряда во внешнем электрическом поле.
  • A – работа электрического поля по перемещению заряда (зарядов).
  • q – заряд, который перемещают во внешнем электрическом поле.
  • U – напряжение.
  • E – напряженность электрического поля.
  • d или ∆l – расстояние на которое перемещают заряд вдоль силовых линий.

Во всех предыдущих формулах речь шла именно о работе электростатического поля, но если в задаче говорится, что «работу надо совершить», или идет речь о «работе внешних сил», то эту работу следует считать так же, как и работу поля, но с противоположным знаком.

Принцип суперпозиции потенциала

Из принципа суперпозиции напряженностей полей, создаваемых электрическими зарядами, следует принцип суперпозиции для потенциалов (при этом знак потенциала поля зависит от знака заряда, создавшего поле):

Формула Принцип суперпозиции для электрического потенциала

Обратите внимание, насколько легче применять принцип суперпозиции потенциала, чем напряженности. Потенциал – скалярная величина, не имеющая направления. Складывать потенциалы – это просто суммировать численные значения.

Электрическая емкость. Плоский конденсатор

При сообщении проводнику заряда всегда существует некоторый предел, более которого зарядить тело не удастся. Для характеристики способности тела накапливать электрический заряд вводят понятие электрической емкости. Емкостью уединенного проводника называют отношение его заряда к потенциалу:

Формула Электрическая ёмкость

В системе СИ емкость измеряется в Фарадах [Ф]. 1 Фарад – чрезвычайно большая емкость. Для сравнения, емкость всего земного шара значительно меньше одного фарада. Емкость проводника не зависит ни от его заряда, ни от потенциала тела. Аналогично, плотность не зависит ни от массы, ни от объема тела. Емкость зависит лишь от формы тела, его размеров и свойств окружающей его среды.

Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

Электроёмкость конденсатора

Величина электроемкости проводников зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками.

Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами.

Каждая из заряженных пластин плоского конденсатора создает вблизи своей поверхности электрическое поле, модуль напряженности которого выражается соотношением уже приводившимся выше. Тогда модуль напряженности итогового поля внутри конденсатора, создаваемого двумя пластинами, равен:

Формула Напряжённость электрического поля внутри плоского конденсатора

За пределами конденсатора, электрические поля двух пластин направлены в разные стороны, и поэтому результирующее электростатическое поле E = 0. Электроёмкость плоского конденсатора может быть рассчитана по формуле:

Электроёмкость плоского конденсатора

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз. Обратите внимание, что S в этой формуле есть площадь только одной обкладки конденсатора. Когда в задаче говорят о «площади обкладок», то имеют в виду именно эту величину. На 2 умножать или делить её не надо никогда.

Еще раз приведем формулу для заряда конденсатора. Под зарядом конденсатора понимают только заряд его положительной обкладки:

Формула Заряд конденсатора

Сила притяжения пластин конденсатора. Сила, действующая на каждую обкладку, определяется не полным полем конденсатора, а полем, созданным противоположной обкладкой (сама на себя обкладка не действует). Напряженность этого поля равна половине напряженности полного поля, и сила взаимодействия пластин:

Формула Сила притяжения пластин плоского конденсатора

Энергия конденсатора. Ее же называют энергией электрического поля внутри конденсатора. Опыт показывает, что заряженный конденсатор содержит запас энергии. Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор. Существует три эквивалентные формы записи формулы для энергии конденсатора (они следуют одна из другой если воспользоваться соотношением q = CU):

Формула Энергия конденсатора

Особое внимание обращайте на фразу: «Конденсатор подключён к источнику». Это означает, что напряжение на конденсаторе не изменяется. А фраза «Конденсатор зарядили и отключили от источника» означает, что заряд конденсатора не изменится.

Энергия электрического поля

Электрическую энергию следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе. По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля. Энергия заряженных тел сосредоточена в пространстве, в котором есть электрическое поле, т.е. можно говорить об энергии электрического поля. Например, у конденсатора энергия сосредоточена в пространстве между его обкладками. Таким образом, имеет смысл ввести новую физическую характеристику – объёмную плотность энергии электрического поля. На примере плоского конденсатора, можно получить такую формулу для объёмной плотности энергии (или энергии единицы объёма электрического поля):

Формула Объёмная плотность энергии электрического поля

Соединения конденсаторов

Параллельное соединение конденсаторов – для увеличения ёмкости. Конденсаторы соединены одноименно заряженными обкладками, как бы увеличивая площадь одинаково заряженных пластин. Напряжение на всех конденсаторах одинаковое, общий заряд равен сумме зарядов каждого из конденсаторов, и общая ёмкость также равна сумме емкостей всех конденсаторов соединенных параллельно. Выпишем формулы для параллельного соединения конденсаторов:

Свойства параллельного соединения конденсаторов

При последовательном соединении конденсаторов общая ёмкость батареи конденсаторов всегда меньше, чем ёмкость наименьшего конденсатора, входящего в батарею. Применяется последовательное соединение для увеличения напряжения пробоя конденсаторов. Выпишем формулы для последовательного соединения конденсаторов. Общая емкость последовательно соединенных конденсаторов находится из соотношения:

Свойства последовательного соединения конденсаторов - Емкость

Из закона сохранения заряда следует, что заряды на соседних обкладках равны:

Свойства последовательного соединения конденсаторов - Заряды

Напряжение равно сумме напряжений на отдельных конденсаторах.

Свойства последовательного соединения конденсаторов - Напряжение

Для двух последовательно соединённых конденсаторов формула выше даст нам следующее выражение для общей емкости:

Свойства последовательного соединения конденсаторов - два конденсатора

Для N одинаковых последовательно соединённых конденсаторов:

Свойства последовательного соединения конденсаторов - N одинаковых конденсаторов

Проводящая сфера

Напряженность поля внутри заряженного проводника равна нулю. В противном случае на свободные заряды внутри проводника действовала бы электрическая сила, которая вынуждала бы эти заряды двигаться внутри проводника. Это движение, в свою очередь, приводило бы к разогреванию заряженного проводника, чего на самом деле не происходит.

Факт того, что внутри проводника нет электрического поля можно понять и по-другому: если бы оно было то заряженные частицы опять таки двигались бы, причем они бы двигались именно так, чтобы свести это поле к нолю своим собственным полем, т.к. вообще-то двигаться им не хотелось бы, ведь всякая система стремится к равновесию. Рано или поздно все двигавшиеся заряды остановились бы именно в том месте, чтобы поле внутри проводника стало равно нолю.

На поверхности проводника напряжённость электрического поля максимальна. Величина напряжённости электрического поля заряженного шара за его пределами убывает по мере удаления от проводника и рассчитывается по формуле, аналогичной формулам для напряженности поля точечного заряда, в которой расстояния отсчитываются от центра шара.

Так как напряженность поля внутри заряженного проводника равна нулю, то потенциал во всех точках внутри и на поверхности проводника одинаков (только в этом случае разность потенциалов, а значит и напряжённость равна нулю). Потенциал внутри заряженного шара равен потенциалу на поверхности. Потенциал за пределами шара вычисляется по формуле, аналогичной формулам для потенциала точечного заряда, в которой расстояния отсчитываются от центра шара.

Электрическая емкость шара радиуса R:

Электрическая емкость шара

Если шар окружен диэлектриком, то:

Электрическая емкость шара

Свойства проводника в электрическом поле

  1. Внутри проводника напряженность поля всегда равна нулю.
  2. Потенциал внутри проводника во всех точках одинаков и равен потенциалу поверхности проводника. Когда в задаче говорят, что «проводник заряжен до потенциала … В», то имеют в виду именно потенциал поверхности.
  3. Снаружи от проводника вблизи от его поверхности напряженность поля всегда перпендикулярна поверхности.
  4. Если проводнику сообщить заряд, то он весь распределится по очень тонкому слою вблизи поверхности проводника (обычно говорят, что весь заряд проводника распределяется на его поверхности). Это легко объясняется: дело в том, что сообщая заряд телу, мы передаем ему носители заряда одного знака, т.е. одноименные заряды, которые отталкиваются. А значит они будут стремиться разбежаться друг от друга на максимальное расстояние из всех возможных, т.е. скопятся у самых краев проводника. Как следствие, если из проводника удалить сердцевину, то его электростатические свойства никак не изменятся.
  5. Снаружи проводника напряженность поля тем больше, чем кривее поверхность проводника. Максимальное значение напряженности достигается вблизи остриев и резких изломов поверхности проводника.

Замечания к решению сложных задач

1. Заземление чего-либо означает соединение проводником данного объекта с Землей. При этом потенциалы Земли и имеющегося объекта выравниваются, а необходимые для этого заряды перебегают по проводнику с Земли на объект либо наоборот. При этом нужно учитывать несколько факторов, которые следуют из того, что Земля несоизмеримо больше любого объекта находящегося не ней:

  • Общий заряд Земли условно равен нолю, поэтому ее потенциал также равен нолю, и он останется равным нолю после соединения объекта с Землей. Одним словом, заземлить – означает обнулить потенциал объекта.
  • Для обнуления потенциала (а значит и собственного заряда объекта, который мог быть до этого как положительным так и отрицательным), объекту придется либо принять либо отдать Земле некоторый (возможно даже очень большой) заряд, и Земля всегда сможет обеспечить такую возможность.

2. Еще раз повторимся: расстояние между отталкивающимися телами минимально в тот момент, когда их скорости становятся равны по величине и направлены в одну сторону (относительная скорость зарядов равна нулю). В этот момент потенциальная энергия взаимодействия зарядов максимальна. Расстояние между притягивающимися телами максимально, также в момент равенства скоростей, направленных в одну сторону.

3. Если в задаче имеется система, состоящая из большого количества зарядов, то необходимо рассматривать и расписывать силы, действующие на заряд, который не находится в центре симметрии.

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

VEDAJ.BY - Архитектура и культура БеларусиDVERIDUB.BY - Двери, лестницы и мебель из массива дуба

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.

© 2014 — 2024 EDUCON.BY — Физика и Математика — Теория и Задачи.

Что означает f в физике объяснение и примеры

В физике буква «f» имеет широкий спектр значений и используется для обозначения различных физических величин. Одним из наиболее распространенных значений буквы «f» является обозначение силы. Сила (f) — это векторная величина, которая описывает воздействие одного тела на другое.

Сила может возникать различными способами: гравитационная сила, магнитная сила, электрическая сила и так далее. Силу можно измерить в единицах Ньютона (Н) и она определяется как произведение массы тела на его ускорение. Таким образом, чем больше масса тела и чем больше его ускорение, тем больше сила, действующая на это тело.

Примером использования буквы «f» в физике может служить закон Ньютона, который гласит, что сила, действующая на тело, равна произведению массы этого тела на его ускорение: f = m * a. Этот закон позволяет нам понять, как взаимодействуют различные тела в механических системах и как они взаимодействуют с окружающей средой.

Также буква «f» может использоваться для обозначения других физических величин, таких как частота (f), которая определяет количество колебаний или волн в единицу времени, или фокусное расстояние (f) — характеристика оптической системы, которая определяет ее способность собирать и сосредотачивать свет.

В физике буква «f» является универсальным символом, который помогает нам описать и понять различные физические явления и величины. Ее использование позволяет устанавливать связь между различными явлениями и решать сложные физические задачи. Таким образом, знание значения буквы «f» в физике является важным для понимания физических процессов и явлений в нашем мире.

Что такое символ f в физике

В физике символ «f» обычно используется для обозначения различных физических величин. Значение этого символа зависит от контекста, в котором он используется, и может иметь различные интерпретации.

Один из наиболее распространенных вариантов использования символа «f» в физике — обозначение силы. Сила (f) является векторной физической величиной, которая характеризует взаимодействие между объектами. Она измеряется в ньютонах (Н) и описывает, как тело воздействует на другое тело.

Читайте также: В чем заключается суть рехабилитации и как она содействует людям?

Кроме того, символ «f» также может быть использован для обозначения частоты. Частота (f) — это физическая величина, которая показывает количество повторений или колебаний в единицу времени. Единицей измерения частоты является герц (Гц), где 1 герц равен одному повторению в секунду.

Также символ «f» может быть использован для обозначения фокусного расстояния в оптике. Фокусное расстояние (f) — это расстояние от оптической системы до фокуса (точки, в которой собираются или рассеиваются лучи), оно измеряется в метрах.

В общем, символ «f» в физике может иметь различные значения в зависимости от контекста использования. Он может обозначать силу, частоту, фокусное расстояние и многое другое. При изучении физики важно помнить, что значение символа «f» может быть определено только в рамках конкретного физического явления или теоретического подхода, и всегда следует обращать внимание на контекст использования.

Объяснение значения символа f

В физике символ «f» может иметь несколько значений в разных контекстах. Ниже приведены два примера, в которых символ «f» имеет различные значения.

    Частота (f) : В физике, символ «f» обычно используется для обозначения частоты. Частота представляет собой количество повторений или колебаний физического явления в единицу времени. Единицей измерения частоты является герц (Hz). Например, если волна звука имеет частоту 440 Гц, это означает, что она повторяется 440 раз в секунду.

Читайте также: Когда исполнится желание узнайте правду о ленорман и сбудется ли ваше желание

В зависимости от контекста, символ «f» в физике может представлять различные физические величины. Важно учитывать контекст и единицы измерения при интерпретации значения символа «f».

Значение символа f в формуле

В физике символ f обозначает различные величины в разных формулах. Вот некоторые примеры:

Символ f Значение Примеры
f частота f = 1 / T, где T — период колебаний
f фокусное расстояние f = 1 / f’, где f’ — фокусное расстояние линзы
f сила трения f = μN, где μ — коэффициент трения, N — нормальная сила
f сила f = ma, где m — масса объекта, a — ускорение

Таким образом, значение символа f в формуле зависит от контекста и может означать частоту, фокусное расстояние, силу трения или силу в зависимости от данной формулы.

Интерпретация символа f в законах физики

В физике символ f может иметь различные значения и интерпретации в контексте законов и формул. Объясним некоторые из них:

1. Символ f может означать силу. В классической механике, сила обозначается буквой f. Она измеряется в ньютонах (Н) и описывает воздействие на тело, изменяющее его движение или форму.

2. f может быть использован в качестве значения частоты. В физике, частота обычно обозначается символом f и измеряется в герцах (Гц). Частота описывает количество повторений или колебаний, происходящих за определенный период времени.

3. f также может обозначать фокусное расстояние. В оптике, фокусное расстояние — это расстояние от фокуса до центра линзы или зеркала. Оно обозначается символом f и измеряется в метрах (м).

4. f может представлять собой фрикционную силу. В контексте механики твердого тела, фрикционная сила обозначается буквой f и является силой сопротивления, возникающей при скольжении или трении двух поверхностей друг о друга.

5. f также может быть использован вместе с другими символами, обозначая различные параметры или переменные. Например, в формуле f = m * a, f означает силу, m — массу, а — ускорение.

Читайте также: Момент, когда Москва стала столицей Руси: исторический обзор

Это лишь несколько примеров того, как символ f может быть интерпретирован в физике. Важно учитывать контекст и формулу, в которой используется символ f, чтобы понять его конкретное значение.

Примеры использования символа f

Символ «f» в физике имеет несколько применений и используется в различных формулах. Вот некоторые примеры:

1. f в формуле для вычисления частоты:

Частота (f) в физике измеряется в герцах (Гц) и представляет собой количество циклов, проходящих через определенную точку в единицу времени. Формула для вычисления частоты:

где f — частота, T — период времени.

2. f в формуле для вычисления силы:

Сила (F) в физике измеряется в ньютонах (Н) и представляет собой физическую величину, характеризующую воздействие на объект. Формула для вычисления силы:

где F — сила, m — масса объекта, a — ускорение.

3. f в формуле для вычисления фокусного расстояния:

Фокусное расстояние (f) в оптике измеряется в метрах (м) и представляет собой расстояние между фокусным пунктом и оптическим центром линзы. Формула для вычисления фокусного расстояния:

где f — фокусное расстояние, F — фокусное число.

Таким образом, символ «f» в физике используется для обозначения частоты, силы и фокусного расстояния. Конкретный контекст определяет его значение и применение в формулах и уравнениях.

Пример использования символа f в формуле Ньютона

В физике символ f часто используется для обозначения силы в формулах. Примером такой формулы может служить закон Ньютона:

Формула Ньютона Описание
F = m * a Сила (F) равна произведению массы тела (m) на его ускорение (a).

В этой формуле символ f обозначает силу, которую можно измерить в ньютонах (единица измерения силы в международной системе единиц). Например, если у нас есть тело массой 2 кг и оно движется с ускорением 5 м/с², то сила, действующая на это тело, будет равна 10 Н (2 кг * 5 м/с²).

Таким образом, символ f в формуле Ньютона обозначает физическую величину силы, которая имеет значение, равное произведению массы на ускорение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *